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Abstract

We argue that, in three dimensions, spinors should have four com-
ponents as a consequence of the algebraic structure realised from the
Clifiord algebra related to the Dirac equation. As an example, we show
then tbat no induced mass appears in vacuum polarisation at 1-loop

in 3D quantum electrodynamics.
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1 Introduction

In this article we analyse the kinematics of the Dirac equation in three
dimensions. Our interest is concentrated on the spacetime with Minkowski
metric {(+ — —), but our results are easily extended to Euclidean space as
well.

In recent years, we have studied the four-dimensional Dirac equation {1]
and discovered that there is a spacetime SU(4) symmetry closely related to
the formulation of the Dirac equation in terms of 1';he Clifford algebra either
of the Dirac matrices or of differential forms (the Dirac—Kahler equation).
Actually, the former are a representation of the latter [2,3]. An analogous
structure is easily verified for the Dirac (or Dirac-Ké&hler) equation in two
dimensions, with §U(2) being the relevant group. This work in three di-
mensions is a step forward in the foundation of such ideas.

Our point is that the Lie-algebraic structure related to the Dirac equa-
tion, or its differential-form Dirac-Kahler counterpart, follows directly from
the Clifford algebra structure {endowed on spacetime for the latter). We
show in what follows that the corresponding symmetry in three dimensions
is SU(2) x SU(2).

In section 2, we construct the SU(2) x SU(2) Lie algebra as derived



CRPF-NF-027/92

from the Clifford generators and their products. We thus show that a 4 x
4 representation follows naturally. It contains the two 2 X 2 inequivalent
irrducible representations obtained treating the Clifford algebra as a finite
group [4].

Subsequently, in section 3, working with differential forms in three di-
mensions including, besides the usual Grassmann exterior product, a Clifford
product between two 1-forms previously introduced by Kabhler {5}, we repro-
duce the results for matrices as should be expected from the isomorphjsmw-
between the two sets demonstrated by Graf [6].

In section 4, we sketch the consequences of the formalism heretofore
developed for the Dirac equation and its differential-form version.

In section 5, we show that the action of discrete symmetry operators such
as parity and time reversal precludes the use of a two-component formalism
for spinors in three dimensions.

Further, we give in section 6 an example of how physical predictions may
be affected through the application of the (Clifford-algebra consistent) 4 X 4
formalism: the 1-loop vacuum polarisation for quantum electrodynamics in
three d.imen"sions has no induced topological mass term (independently of
regularisation procedures).

Finally, in section 7 we present our conclusions.
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2 The Clifford algebra of Dirac matrices and its
Lie algebraic structure

Let us consider the Clifford algebra obtained from three (matrix) generators,

4# (1 = 0,1,2). The well-known defining relationship is
7Y+ = 29", (1)

These generators may be made hermitian by suitable multiplication by a
factor of <. The same can be done for their (matrix) products, and all

together form a commutator algebra of the form
[CK$CL] = CKLMCMa (2)

where K, L, M =0,1,2,01,02,12,012. Notice that the product of the three
Clifford generators commutes with them and all their products. Besides,
notice that this structure is contained in the subsets of the 4-dimensional
Cliffiord algebra obtained when one discards there a given generator and the
products including it. |

For the sake of definiteness, let us consider the set formed by 79, §y* and
the matrix product 4%y}, in order to work with hermitian matrices. Let us
define

1 .
X = 5‘1'“, Xy =iy,  Xi=9%. (3)
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Because of the defining relationship, eq. (1), one finds
[Xi, X;] = ieija X (4)

This is an SU(2) structure, like the one appearing in two dimensions. Con-
sider now the set formed by the remaining generator and its products, £42,

4%9? and i9192. Define

1, 1 1,
h=gir', Ta=-31%" Y=gir. (5)
They satisfy
[¥:,Y;] = deijn X (6)

Also, we have

[Xi, Y]] = €Yi. (N

These two sets of commutators point to an SU(2) x SU(2) structure, which

is readily brought to light by defining
1
wE = E(Jan., +Y:). : (8)
These objects obey separate SU(2) algebras,

W wi| = iqwit &)

[W.-"‘,WJ-'] = 0. (10)
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The matrices representing these W2 generators can be taken to be block

matrices, namely,

o 0 0 0
“’;“:1 , W =

2 .
0 0 0 o

8D | =

.y

where o denote the Pauli matrices. It is now easy to reconstruct backwards

the generators and their products. We get

Notice the all-important minus sign in the lower block of 42. This is a
consequence of the fact that i7%y'4? commutes with every other matrix,

and should naturally have the structure

.. 0,1,2 r.o
ity = . (13)

0 -1
The particular form of this matrix agrees with the arguments in the classical
wark by Brauer and Weyl [10]. (In fact, Brauer and Weyl even introduced
the concept analogous to Hodge duality for Dirac matrices, but did not
completely finalize the arguments leading to the actual form of the algebra.)

As a starting point, we omitted from the original set the generator 2.

We could as well omit any one of the others. The results are shown below
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for 7° omitted (analogous to the Kramers-Weyl picture in four dimensions):

o3 0 ‘010 ‘030

0 -0 0 L] 0 [+ L]

Instead, to get the analogous of the Dirac-Pauli picture in four dimensions,
it is needed a symmetric substitution in the example with 4? omitted. We

get

0 o3 0 o 0 -o;

15)
The reason for the proposed names of these two pictures seems now evident:
4° is diagonal and has the sign of the energy in the rest frame for the
Dirac-Pauli picture, while 4° and §714? exchange places when going to the
Kramers—Weyl picture.

The main point for these results is to take the product of two Clifford
generators as a different object as compared to the third generator. When
analysing the problem using differential forms we shall see that this comes
from a geometrical consideration.

Let us now compare these results with the ones currestly used in the

literature, coming from the consideration of a Clifford algebra as a finite
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group under multiplication [4]. This is what results from looking at the

generators W* of the two-block SU(2) group matrices. They satisfy
WG 2W + 2WE 2W = Bl £ i7"y (16)

by construction. (Notice the same feature for Pauli matrices and SU(2)
generators, which differ by a factor 2.) Given that #y%y'9? is of the diagonal
form showed in eq. (13), it is clear that these generators satisfy a Clifford
defining algebraic relation at each of the single subspaces corresponding to
the eigenvalues of iy%y 2.

The generators W* constitute then two irreducible representations for
the finite group obtainable from the Clifford generators and their products
which are inequivalent. The geometrical meaning of the inequivalence will
be displayed with differential forms.

The fact that inversion of an axis transforms W+ and W~ between
themselves will be evident in the subsequent study of discrete symmetry
operations. Anticipating the treatment through differential forms with Clif-
ford product, let us state that the signs in the diagonal-block matrix #7012
may be related precisely to the ha.ndednegs, or chirality (giving this word
its precise Greek meaning), of the spacetime reference fra.m;.

A comparison between these matrices and those quoted in the literature
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for the four-dimensional representation [7] shows a substantial difference:

there is always a relative minus sign for one of the lower blocks.

3 Clifford algebra with differential forms in 241
dimensions and Lie algebra

The content of this section is an explicit construction of the isomorphism
proven by Graf {6] for all dimensions between the matrices of the Dirac
algebra and differential forms, provided that a Clifford product is defined
for the latter.

The space of differential forms in three dimensions has eight components,
1,dz*, dz* Adz", dz° Adz' Adzd =6,

where y and v run from 0 to 2 and A denotes the usual representation of
the exterior product of differential forms, implying a Grassmann algebra
between 1-forms,

dz* A dz¥ + dz¥ A dz* = 0. an

“The duality + operator defined by Hodge links the subspace of forms with
~ degree p'ivith that of those with degree 3— p; thus, the set of four components

(1,dz*) maps into the remaining four, that is, (dz* A dz¥,¢).
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We assume further, following Kahler [5,8], that a Clifford product be-

tween 1-forms is defined such that
dz* v dz¥ = dz* A dz¥ + ¢*. (18)

The associative properties of this product follow from the above definitions
and are summarised at the simplest level by the expressions
(dz2* vdz)Adz? = (¢"* +dz¥ Adz*)Adz’®

= g"dz? +dz¥ Adz¥ Adz? (19)

dz* v (dz¥ Adz?) = (dz* v dz*)Adz’, {20)

With this operation, we endow the space of differential forms with a Clifford

algebra:

dz* v dz* 4 dz¥ V dz* = 2¢*". (21)
We now use the Clifford commutator between differential forms [8):
|[¢=F,dzt] = d2X v dz* - dzb v doX, (22)

where dzX and dz’ represent two out of the eight basic differential forms.

In order to be able to exhibit the Lie-algebraic structure relevant to three
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dimensions, we give eﬁ:plicitly the Clifford commutators for all forms:
z",dz"|,, = 2dz° Aax z, Adz?], = ~2dz
dz®,dz'),, = 2dz° A dz?  [dz!,dz! Ad2?), 2dz?
z',dx = 2dz" Adz s Adz*], = 2dzx
{d2°,d2?], = 2d2z° A d 2 [dz%,d2%Ad ’]v 2dz°
dz%,dz% A d2t], = 2d2! [dz?,dz! A dz?], = 2dz!
[ v v
dz%,dz% A d2?), = 2dz? [dz® A dz},dz° A d23], = —2d1! A d2?
v v
dz!,dz?]), = 2dz' Adz? [dz® A d2},dx! Adz?], = —2dz° A dz?
v v
dzl,dz0 A dzt), = 2dz° [dz® A d23,d2! A d2?], = 2d1° A dZ),
v v
all others being zero. We notice that the volume form £ commutes with all
the remaining forms. As for matrices, this indicates the algebraic structure
that is expected to arise.
We now construct the analogous to the example developed in the previ-
ous sectiop. Let us consider the three forms d2°, idz! and dz% A dz!. Notice
that all have in common that the Clifford product of each one of them with

itself is 1. The Clifford commutators are
dz®, idzl] , = 2ida® A ds?

idz?,d2® A dz?| = 2idz®
L v

d2® A da?, dz°) = 2i(idz").

Defining

X, = %d:co, Xz = %id:l, Xa= %dzo Adzl, (23)
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the above commutators can be synthesised as
[XkaXI]V = $€ktm Xm, (24)

with €4, the usual totally antisymmetric symbol. The dual Hodge forms
are dz! A dz?, dz° A dz? and dz? for the original set. Consider now the

commutators among the set idz! A dz?, —dz° A dz? and i{dz?. One finds
lidz? A dz?, —dz® A d2?| = 2ids® A d2
[id2?, ida® A dz?] | = 2i(idz")
[~dz° A d2?,idz?] , = 2idz® Ads?,
so that by defining
Y1=§1d: Adz®, Y3=—§dz A dz?, Y3=§—1dz, (25)
the above commutators can be summarised in the relation
Y, Yy = d€ism Xom. . (26)
Analogously to the matrix case, define now

W} = 2(Xi+ i) (27)

Wi = 3(Xe-Ta). (28)
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Application of the rules of the game results in

Wi WE ], = iennWt (29)
wiwr), =0 (30)
W, W, , = Wi, (31)

Just as for the matrices, we get the structure of an SU(2) x SU(2) algebra
for the differential forms. That is, conversely, any differential form can
be represented as a linear combination of SU(2) x SU(2) generators, the
unit matrix and the volume form. This is precisely the content of the Graf
isomorphism [6),

7 e d” v, (32)

Moreover, the following properties are valid:

WE = LiWF (k=1,2) (33)

WE = FWF (34)
and, subsequently,

WE=W2E (k=1,2,3) (35)

We see that the prominent role of the matrix iy°y'7?, the product of

the three generators of the Clifford algebra, corresponds in this language
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to the volume form of spacetime. The handedness or chirality of the vol-
ume element labels precisely the two blocks in the corresponding matrix
description.

QOur emphasis on the consideration that the product of two generators of
the Clifford algebra be a different quantity than the other generator trans-
lates here in the well-known fact that the exterior product of two line ele-
ments is an element of area, not another line element.

We see from the above equations for the SU(2) generator§ W2 under
a duality (Hodge) transformation that the irreducible inequivalent 2 x 2
representations coming from the analysis of the Clifford algebra as a finite
group form in fact a dual closed set. From this follow their transformation
under an inversion of any axis. In terms of the volume form, they transform
from one chirality into the opposite.

As a final interesting observation, let us remark that

AW VAW v HWY = -;-(1 +it) (36)

%W v HW V 2W; = %(1 i), @37

which are properly the chiral projections on the 2 x 2 block spaces.
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4 The Dirac equation in three dimensions

The explicit construction of the representation for the Dirac matrices con-
firms that the four components of a 4-spinor couple in pairs in the differential
equation.

This implies that physically the world in three dimensions is made of
two blocks labelled by the eigenvalues of i9°y!72, which could perhaps be
qualified as right handed or left handed, according to the way coordinate
axes are oriented. Particles and antiparticles are partners with the same
handedness, as we shall see below.

However, as demonstrated for two and four dimensions of spacetime
[1,2,3], the discrete transformations of space inversion and time reversal are
crucial to the complete understanding of the underlying algebraic structure.
In our case, they forbid one to isolate a single handedness and force the de-
scription of Spin-% particles in three dimensions by four-component spinors.

We now refer briefly to the formalism which deals with spin-% particles in
terms of differential forms. Further references can be found in our previous
work [1,2,3] and in the work of Becher and Joos [8].

~The differential operators of exterior differentiation, d,and its adjoint

(with respect to the “usual” scalar product), §, combine to form the Dirac—
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Kahler operator, i(d — §).! This operator leaves invariant the minimal left
ideals of the Clifford algebra [3,8] and any ideal can be associated to a Dirac
spinor.?

Since the work with differential forms for spin-4 particles is less familiar
to theoretical physicists, we shall only state here that one can construct the
set of four coupled linear differential equations of the first degree from the

application of the Dirac-Kahler operator to a minimal left ideal, ¥,
t(d— §)¥ = mV. (38)

The four equations couple by pairs, as expected from the algebraic struc-
ture described above. The properties under discrete transformations can be

discussed in the same way we shall proceed for spinors.

5 Discrete transformations: C, P, T and CPT

5.1 Charge conjugation

Returning to the matrix formalism, let us begin by considering charge con-

jugation. Applying the standard procedures from textbooks [11], the matrix

}We have slightly changed our conventions with respect to previous work, following

now those of Curtis and Miller [9).
*We remind the reader that a left ideal is a subset of ap algebra which is invariant

under left multiplication; it is minimal when it is the smallest subset of this class.
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that implements the charge conjugation operator, C, should satisfy
C144C = 7™, (39)

where the superscript t denotes transposition. For three dimensions, it turns
out that the Hodge duality properties of differential forms translates into the
existence of two matrices in the matrix formalism as the representatives of
differential forms related by Hodge duality. The matrices also depend on

the picture. For the pictures considered above, we have

¢° = 9991¢* or —iy2y" in the first example, Eqs. (3) and (5),
¥ = iyly* or —9%°y2¢* for the Dirac-Pauli and
Kramers-Weyl pictures.
The difference between the two alternatives is a relative sign for the lower
pair of components.
Since the matrices at work belong always to the class of block-diagonal
4 X 4 matrices, the charge-conjugate spinor features only a reshuffling within

the blocks corresponding to each of the eigenvalues of the matrix %13,

5.2 Space inversion

In three dimensions, space inversion is different when compared to the neigh-

bouring cases of even total dimensions (2, 4). It is a simple drawing exercise
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to check that the simultaneous inversion of both space axes corresponds to
a rotation through an angle r about the time axis. Accordingly, spinors are
related by a simple rotation operator. There is again an equivalent action

by the dual operator. For all pictures, one has
vz’ = —=z,t) = iy v (=, 1),

or
1}”(.‘8' =—z,l)= 70‘1’(310-

Thus, the blocks with different handedness are not exchanged.

If it is desirable to exchange handedness (or chiralities), this can be
performed by inversion of a single space axis. The matrix representing this
is no longer of the block-diagonal class, but the ambiguity concerning the
relative sign for the pair of lower components in the spinor persists. Calling

Py the matrix for inversion of the k space axis, the candidates, for the
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pictures considered, are

\
( 0 oy ( 0 *I \
The first example: Py) = . Py =
> o] 0 < > I 0 <
| 0 zos 0 +r
Dirac-Pauli: .Pu) = » ‘P(2) =
\ as 0 ) I 0 }
0 Zo; 0 +£oy
Kramers-Weyl: Py = —i v Poy=
o 0 \ o 0

This clearly shows the inadequacy of the representation by two-component

spinors.

5.3 Time reversal

This transformation exchanges handedness by necessity. The novel feature
in three dimensions is the link between the components of the complex-
conjugate spinor and a spinor transformed from the original one. The results
for the time-reversed spinors in the pictures considered are

Dirac-Pauls

0 o 10 I
Y(z,t' = -t) = ¥(z,-t) = ¥ (=,-1); (40)
toy 0 +I 0 =
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Kramers—Weyl

0 I 0 251
Y(z,t' = -t) = e, —t) = ¥'(z,-t). (41)
I 0 oy O
The operation for the first example is the same as in eq. (40). Again, we see
that the matrices concerned are outside the realm of diagonal-block matrices.
It is interesting to remark that, when a relative sign appears between

the non-diagonal blocks, 72 = —1. For matrices with blocks of the same

sign, T2 = 1.

5.4 CPT

As follows from the considerations above, there are two classes of results for
the combined operations. When space inversion is meant as a simultaneouns
reversal of both space axes, the pair of upper components takes the place
of the pair of lower components. In general, there is, in addition, an ex-
change inside each pair, with relative phases being introduced. There is one

particular exception, which occurs for the Kramers—Weyl picture, with

0 oy
-C=9%, P=iyly’, T= , (42)
:|:0'1 0
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we have

0 I
(CPT) = v. (43)

I 0

When space inversion means the reversal of a single space axis, CPT
always results in a block-diagonal matrix acting on the original spinor. This
block matrix turns out to be the gamma matrix with the spatial index that
is not inverted, or its “dual”. For Py it is 4% or i%y*, and for Py the
result is similar. The geometrical meaning of this result is not yet fully

appreciated.

6 A physical application: non-existence of topo-
logical mass in QED;

In this section we illustrate how our prescription for 4 X 4 gamma matrices
lead to different physical results when compared to the usual representation
in terms of Pauli matrices, namely, 7/° = o3, 4! = i0y, 42 = i0;. For this,
we compute the 1-loop vacuum polarisation in three-dimensional electrody-
namics, commonly pictured by the Feynman graph of Figure 1.

Applying the Feynman rules for a 3-dimensional spacetime, we obtain,
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for the polarisation tensor,

[ g 1 {y(d+ mpy*((4- #) + m]} (44)
@rP l(g-pP - m?(@ ~m?)

For comparison, we compute the trace of gamma matrices appearing in

(%) = -

the above expression in the 4-dimensional representation for which we have
given arguments to support its use as natural in three dimensions and a
2-dimensional one, currently found in the literature, through the use of the

following properties:
e Algebraic representation (4 x 4)
tryyY = 4g*
tryty’y = 0
'y = A(e*eY - ¢ + 99
e Finite-group representation (2 x 2)
tryty’ = 24%
tr Yty = —2ié?
try* 'Yy = 2gg" ~ g + g9,
It is mainly the clearly different trace of three gamma matrices that leads

to physically inequivalent results for either type of representation, as Jackiw

emphasises in recent lectures [12}.
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Thus, the traces in the polarisation tensor formula becomes

o 4 X 4 representation:
4-p*¢" - 9" ¢ + (- 0)g* + 2¢"¢" — 9" + m7g*"] (45)

® 2 X 2 representation:
2[-p"¢" - 0" +(p-Q)9* +2¢"¢" — ¢’¢** - ime***p) + m?¢g**]. (46)

After introducing a Feynman parameter z, making a shift ¢ — ¢* + p*2
in the loop momentum, passing to Euclidian space according to z3 = iz°,
¢® = —ig®, so that d% = —i|§]*sin 6d|F|dAd¢ in spherical coordinates, and

performing symmetrical integration, we get for the polarisation tensor,

]I"w(pz) = ¢, (p’) + p%nz(f’z) + '.mf”yAPAHS(Pz): (47)

with

; 2,01 _ 11512 2
M%) = -:—2 :dz f: Iﬂ’dlq‘lﬁﬂz,(_l_ p’?(: ff)] :,312 (48)

i fee 1=
N = -5 o [t e @

Ma(p’) = O, (50)

for the 4 x 4 representation, while for the the 2 x 2 case, II;(p?) and L{p?)

get a factor of 1/2 with respect to the above expressions and II3(p?) becomes

i 1 oo 1
W) = 73 [ de [ Pl (6D
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The gauge-invariant expression for the polarisation tensor is then given

by

12,6 = (9 - 25 ) (0 - i) + ol (52

where 0 < a < 1 is an arbitrary parameter (see [13]), or

ng10%) = 5 (9 - BF) Ta2t) + imeplaa?).  (55)

As we can see from eq. {52) or (53), there is no induced Chern—Simons mass
term in the consistent 4 X 4 representation.

Using the 2 x 2 representation, an argument was raised [14] concerning
the dependence of this term on the regularisation procedure. We show that,
in_any case, the appearance of this term {12] is in reality an artifact of the

2 X 2 representation.

7 Conclusions

The main results of this work were listed in the introduction. Let us here
just add a few comments.

We believe that we have unveiled 2 most important algebraic structure of
t_l;ree-djmensiona.l. spacetime. These new results exemplify and reinforce, for
three dimensions, the validity of the Graf isomorphism between the matrices

associated to the Dirac equation and the differential forms with Clifford
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product. In other words, the algebraic structure associated with spacetime
follows directly from the related Clifford algebra structure.

Besides, our results support the existence, for any number of dimensions,
of a Dirac ring in which the products of Dirac matrices are different from
them. This is natural for differential forms, but was not appreciated earlier
in three dimensions for the Dirac matrices.

We have also shown that this algebraic structure makes the discrete
operations of space inversion, time reversal and charge conjugation in three
dimensions rather peculiar. The understanding of this demands further
investigation.

In the light of this structure, the need for a description through four-
component spinors of spin-% particles follows. These four-component spinors
and four-dimensional representation for the gamma matrices are certainly
different from the ones currently quoted in the literature, and this may
induce changes in several physical results obtained for three-dimensional
systems. As an example of how physical results may change, we have shown
explicitly for QED3 the non-appearance of the induced Chern—Simons mass
term at one-loop approximation.

A careful treatment of space inversion for Chern—Simons theories includ-

ing (three-dimensional) fermions was required in recent articles by Hagen
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(15) in order to handle the possible P or T non-invariance of these the-
ories. The need to include both spin “projections” (which correspord in
our terminology to “chirality”) is emphasised, and the correct understand-
ing of fermion transformation properties under discrete symmetries seems

mandatory.
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