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ABSTRACT

Super ~heavy atoms ¢ Z > 100 ) are usually stiudied in the

context of the so-called " Quantum Electrodynamics of Strong

Fields "“. In this theory the problem of the singularity in the

electron energy whenever Z > 137 is overcome. This is done by

considering the finite size of the nucleus and leads to

interesting phenomena, such as tLhe spontaneous production of

positrons, Here, we show that, taking into account the
contribution from the Anomalous Magnetic Dipole Moment of the
electron ¢ by means of an effective theory DJ,within a point

nucleus model, is a sufficient condition to obtain regular wave

functions and physically acceptable energy values for Z > 137.

Key-words: Superheavy atoms; Strong electromagnetic fields.
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1. INTRODUCTION

In the last fifteen years a great deal of attention
has been given to the problem of atoms with very high atomic
numbers, Z > 137. At sufficiently small distances the radial
solutions of the Dirac equation for an electron in the field
of a point charge Z|e| behave as r'Y, where

y= [+ 1202 - (2a)2 7172 (1.1)

and a = e2 = 1/137 is the fine structure constant. Now if

Za > j + 1/2, vy becomes a pure imaginary number and the solution
oscilates infinitely many times as r - 0 and no boundary
condition cap be imposed at r = 0,

This difficulty disappears when one acknowledges the
finite size of the nucleus. This provides a cut-off for the
attractive Coulomb field and meaningful solutions which behave
regularly at the origin can be found for any Z. The theory
presents some interesting novel features such as the decay of the
neutral vacuum into a charged vaccum by spontaneous emission of
positrons[i,2,3,4]. These predictions have been observed in U-Cm
and U-U- collisions [5]

In this paper we present an alternative way to regularize
the wave-functions at r = 0, As Grandy[G] pointed out, this can
be done if one takes into account the anomalous magnetic dipole
moment (AMDM)} of the electron through the Pauli effective
Hamiltonian (see below). We then show that well behaved fuhctions
can be obtained, even in the case of a point nucleus. The system
behaves pretty much as the finite nucleus model and all the
interesting new phenomena which appear therein are also present
in this new focalization,

2. ANOMALOUSLY MAGNETIZED ELECTRON IN THE FIELD OF A POINT NUCLEUS

The AMDM of the electron can be taken into account by
adding to Dirac's equation a phenomenological new term due to
Pauli. The thus modified equation is 1.'7.]
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v (2.1}
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['\" (1:,.“l eAu) mj v (ae/2m) (1/2)0" " FU\J

Here, a = (g=2)/2 is the ratio between the AMDM and the Bohr
magneton. We shall take a static point nucleus with charge z[c],
so that the potential 4-vector is given by

Ak = (zle|/z,0) (2.2)

Then (2.1) can be put in the form

i __g.'k_. = Hy | (2,3)
t .

with

H=v°Y.p+ qyo - —E%— - (ian/2mr2)¥.£ (2.4)

where ¥ = r/]rl is the unit radial vector and y° and Y are
the Dirac matrices. Now, since the anomalous term
{(-iaZ /2mr ){y.:) comutes with J2, J, and with the parity

operator, the wave function can be put in the form

m ~
. Ultr) Qk (:)

{2.5)

m -

where Qk is a spherical Pauli spinor and -k =+ (j + 1/2) is the
eigenvalue of the spin-orbit operator ¥y (E .L+1) . The radial
functions U, and U, satisfy the coupled equations[&]

dUl

dr r 2mr r

(2.6)
au y

dr r 2mr
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3. THE WAVE~FUNCTION FOR r << l/m

The set of equations (2.6) has two essential

singularities at r = 0 and r = » and is very difficult to solve
exactly. Nevertheless, its behaviour near the origin can be found
by neglecting the texrms m + E and m - E which, in this region,
are small compared to Za/r. By introducing x = mr, we then have

the truncated equations

du
1+(__1L__AZ_%;U1=3& U,
dx X 2X X

(3.1)
au

dax

which are freed of the essential singularity at x = «, The
decoupling of these equations leads to

dzUl 1 99 (zg) 2-x2 (2k+1) a7 (aza) 2
A -. -
N X ¥ E x * 2x3 4 :l Ul

= 0
ax® x  a ax
(3.2)
alv, | av, ¢z ?x? | (2k-1)a (azmz_-]
+ + [ SRR SSETAS8 U, =0
ax® x| ax T X 2x° | _4x4 2
Because X = «® jis a regular point we introduce a new
variable
y = aZa/x - (3.3)

and new functions

Vi,2=Y " Uy 2

in terms of which, (3.2) becomes

(3.4)
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_332% ¢ [l s kel/2 | (2 )2-32;1 ¢ Tv, = 0
dy 4 Y Yoo 1
(3.5)
d2"2 1, k=1/2 . (2a)3-x%1/4
--—--;;—d 5 + [- + + ,'2 J v2 = 0
Y 4 4

The solutions of (3.5) which satisfy the boundary conditions
Uy (x), Uy(x) + 0 as x + 0 (y + ) are Whittaker functions of
second kind [9]

Vi T A Mg,y )
” (3.6)

V2 T R2 Wel1g2,y M)

where Y is given in (l.l). To determine the relation between
A, and A, we substitute (3.6) back in (3.1} thus obtaining

So that, considering (3.3) and (3;4), we have

(3.8)

Uy = -azalx/aza) Y2 W ), (azesx)

where A is a normalizing constant. The Whittaker function remains
real as Za surpasses j + 1/2 and Y becomes 1maglnary[§ 4] 50 no
problem appears in the boundary condit;on at r = 0. From the
asymptotic behaviocur of the Whittaker function
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W AY) - y" expl-y/2) as y + = ' (3.9)
t’Y

we obtain the behaviour of the wave function near r = 0.

A(aZd/x)B exp (-aZa/2x)

"~

as x + 0 (3.10)

Uztx) AZa(agu/x)k-l exp (~aZa/2x)

From {3.10) we see that, as long as a > 0, the
exponential factor dominantes and the wave fuhétion dies off as
x + 0. (If a < 0, one makes the substitution y = -aZa/x instead
of (3.3) and again, one gets well behaved solutions near x = 0
which can be obtained from (3.8) by the transformation a + -a,
k + 1/2 » =k + 1/2). Note that near the origin the wave function is
independent of v'. The effect that the AMDM can render an ill-
defined Dirac equation self-adjoint was noticed before by
Goldhaber et a&.[1Q]'in the context of the Dirac equation in the
field of a magnetic monopole.

4. NUMERICAL RESULTS AND QUALITATIVE ANALISIS

In order to find the eigenvalues of energy we decoupled
the set of equations (2.6) and made the transformation[q];

1/2

Uy = [m+ (E+ za/r) el X4 (1) (4,1)

where i = 1,2; €, = +1; €y = -1, By defining

hy(r) =1+ (E = me;)r/Za (4.2)

we f£ind that the transformed functions x; satisfy the
Schrodinger~type eguation
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- xi(r) + Véé% (r)_xi(r) = wz xi(r) ' (4.3)
where

w? = g2em? (4.4)
and
vi . = -2Eza/r + [ kik + £ -(20)% J/2?

eff . - 7*1 L]

. 2 3
(Leke,) /eh, (1) +3/4r°h2 (2) = (kve ) azog o™+ .5

+ aZae /2ncn, (x) + (ae) 2/n’s"

Observe that the energy-dependent effective potential
{4.5) has a repulsive term (ala) /4m2r4 which at small
distances dominates and cuts off the’ Coulomb attraction. This
l/r4 term plays here a role analogous to the cut-off in the
potencial of the finite nucleus model.

In order to solve (4.3) numerically, one first has to
‘decide which value of a to use in the effective potential (4.5).
1f we take the infrared limit a = o/2m, then (3.10) indicates the
AMDM leads to a cut-off of the wave function at distances
aza/2mr~l or r -~ aZa/4mm < 1 fm, corresponding to momenta of
almost 1 Gev/c. However, the jnfrared limit of the AMDM is
obtained from the form factor in the limit | p | << m ~ 0,5meV/c. It is
therefore, guestionable if the infraréd limit can be applied.
on the other hand Ritus (1I] has shown that in the context of
~a uniform electric field ¢ (as well as magnetic) the AMDM
depends on the field and on the momentum component transverse
to the flEld Fér null transverse momentum and very strong
" field (es/m »>> 1) the AMDM is twice that of the infrared limit,
that is a = a/7. In the case considered here, the electron gets
so close to the nucleus that the above condition on the field is
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certainly satisfied. So, it is reasonible to guess that, at least
for s waves (which have no transverse momentum to the field) the
same limit may be applied.

Equatign (4.3) was solved numerically in both limits.
The eigen values thus obtained are plotted in fig. 1 (Together
with the finite nucleus model results DQ] for comparison). The
numerical method we used requires that (aveff/aE)-zs has the
same sign for all r. This condition is satisfied only for i =1,
k < 0. We were thus unable to verify if the fast diving of the
2P1/2 state (k = +1) observed for extended nuclei also happens
in the case studied here. The shape of the curves in fig. 1
can be qualitatively understood as follows: suppose we know
the eigenvalues of the Hamiltonian (2.4) at a given 2 value

H(Z)¥,, = E_, (2) (4.6)

and let us examine what happens when the atomic number is
increased by a small amount §Z. We have

H(Z + 62) = H(2Z) + 82 U (4.7)
where

. 2, > .
U= ~a/x - (iag/2x )Y.x

The variation in energy can be found by perturbation
theory. In first order we have

bE = 82 <yp|0]¢> (4.8)
then, using (2.5) we get

2,..2 2
dE/dz = - o S ax(Uj+U5)/x - aa [ dx U,U,/x (4.9)

In the case a = 0; (4.9) looses its meaning for Z a> 1, because
the integrals diverge. For a > 0, however, the exponential factors"
in (3.10) ensure the convefgence for any 2, as_long as [E| < m.
The first term in (4.9) is negative. The second is positive, at
least in the ground state, since, in this case, Ul and U2 have
opposite signs, as one can see from (3.10) and from the fact °
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that the ground state wave function has no nodes. Nevertheless,
since a is so small (~107>
little and dE/AZ < 0.
Furthermofe; one can = see that dzE/dz2 is also
negative. The most important contribuéion to the integrals in
(4.9) comes from the region around the maxima of U; and U,.
As Z increases, these maxima move towards x = 0 (the electron
gets closer to the point nucleus), therefore, increasing the
contribution of the 1l/x factor in the first integral. So, we
can presume that the derivative dE/dZ increases in absolute
value as Z increases. So, E is a decreasing function of Z with

}, the second term contributes

negative curvature.

It is then clear, that, just as in the finite nucleus
model, as the atomic number increases, a value, called critical
Z, will be attained, for which E = -m. Evidently this number
will depend on the quantum numbers n and k of (4.6). The largest
159 (198) for
15(28) waves and a = a/27. For a_= a/n these values change to
164 and 209, respectively. As 2 increases further, the
previously discrete state will become a member of the negative

integer for which E > -m was found to he 2

continuum as (4.9) indicates. These over-critical states can

be singled out from other members of the continuum by the shape
of their wave-functions. The wave function of the continuum
states are pratically zero within the atom but, as the enerqgy
~approaches the "dived in" state energy, a highly pronounced peak
appears near r = 0, which is characteristic of ressonant states.
This situation is illustrated in fig. 2, for a = a/2m. To obtain
this "dived in" ressonant 1S state we extrapolated the E(Z)
function obtained for the undercritical 1S state to Z = 160,

the first over critical atomic number. Next we put this energy
value back in {2.6) and solved the resulting set of equations

by an initial value method., The initial values for U, and U,
~were obtained from (3.8) at x = mr = 10-5. Then by a careful
search around this énergy value we looked for the ressonant
behaviour described above and found an extremely narrow peak

at £ = -1,074969485 electron masses., Fig. 1 also shows the

wave function for a non ressonant energy value.
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5. CONCLUSION AND ACKNOWLEDGMENTS

In conclusion, we have seen that the AMDM does regularize the
wave functions at r = 0, even for point®huclei.

As for the value of the eritical atomic number, this will
depend on the anomalous magnetization the electron attains at
strong flelds. We also suggest that the combined effects of boths
the finite size of the nucleus and the AMDM should be expl ored
before a conclusion as to the precise value of the eritical charge
can be reached.

We are deeply obliged to Prof. Walter Thomas Grandy, Jr. of
the University of Wyoming for suggesting the problem and for many
‘useful discussions.

We want to thank the Brazilian agencies FINEP, CNPq and CAPES
for partially sponsoring this worlk.
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FIGURE CAPTIONS

Fig. 1. - ExZ curves
- - w = finite nucleus
point nucleus, AMDM model, a = o/2w

(12)

«=.=.— point nucleus, AMDM model, a = a/m
{for 2 P3/2 waves, the three curves coincide).

Fig. 2 - Super critical Ui + Ug function in the point

nucleus + AMDM model, with a = a/2m.
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