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ARSTRACT

The usual FRW hot big-bang cosmologies have been generalized
by considering the equation of state p = Amm + (y-1) p, where m
is the rest mass of the fluid particles and A is a dimensionless
constant. Explicit analytic solutions are given for the flat
case (¢ =0). For large cosmological times these extended models
behave as the standard Einstein-de Sitter universes regardless
of the values of A and y. Unlike the usuai FRW flat.case the de-
celeration parameter g is a time-dependent function.-.and its
present value, g ~ .1, obtained from the luninésity distance vermsus
redshift relation, may be fitted'by taking, for instance, A =
l and v = 5/3 (monatomic relativistic gas.with.m >> kBT). In
ali cases the universe cools obeying the same temperature law
of the FRW models and it is shown that the age of the wniverse is only
slightly modified.

Key-words: Cosmology; General relativity; Thermodynamics; Equa-

tions of state.
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NONSTANDARD BIG BANG MODELS

Observations have revealed that the universe is very close to

a Friedmann—-Robertson-Walker (FRW) cosmological model, whose 1line

elenent may be cast in thé follawing form! (c =1}:
ds? = dt? - RZ(t) El—erz)"drz +r?de? +rzsin29d¢2:|, (1)

where € = 0,21 is the curvature parameter'of the maximally sym-
metric gpatial sections t =const.

In that background, the nontrivial Einstein field .- equations
for a comoving perfect fluid as source of gravitation, and the

particle number conservation law are given by (81G =.1)

p=-.§:(k_24-s) , (2)
__.R_R _ &
%=_3§ , (4)

where an overdot means a time derivative, and p,p and n are the
energy density, the tharmostatic pressure and the particle number
density, respectively. |

As it stands, the above system is undexdetermined since there
are four unknowns and only three equations. Thus it is necessary
to provide one more relation between the variables, which is

usually supplied by themmodynamical considerations. The expres-
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sion otrdinarily employed in the cesmological context is the well-

known "gamma-law" equation of state

p = {y-lp ., (3)

where the constant parameter y lies on the intemval [0,2]. With this chaice,
the subsystem (2),(3) and (5), in the unknowns R,p and p is already
determihed, independéntly of (4); accordingly, the usual :proce-
dure in the literature is to discard (4), thereby 'ignoring the
true dynamic degree of freedom related to the variable n. Such
an approach is in fact justifiable only in fouf distinct cases:
(i) a vacuum-like stage (y = 0); (ii) a : radiative {fultrarela— .
tivistic) fluid (y= 4/3): (iii) an incoherent fluid (dust) (y =1),
or (iv) stiff matter’(y =2).

In this work, our aim is t_o examine the role of the - variable n
upon the behavior of the model (evolution of the scale. factor;
thermodynamical and observational aspects, etc). To that .end,
we congider an equation of state more general than (5), .which
holds for an ideal relativistic Maxwell-Boltzmann gas subject to

a polytropic process, that is, one for which
p = Kn' (6)
where K is an integration constant and y is the polytropic in=- .

dex. In this case, it may be shown that, for vy # 1, the new

relation between p,p and n is of the form2—*
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p=namn + (y-1)7'p , 1%)
where A is a dimensionless.constant and m is the (rest) mass - Of
the constituent particles of the fluid. .If A =0, the usual "gam-
ma-law" is recovered. For a monatomic (y = 5/3) relativistic gas
at temperature T, as first shown by JUttner’™’ from a statistical
point of view, one.. may take A =1,providing ﬁ 2> kBT’ where kB
is Boltzmann's constant. Notice also that, as concerns Egs.(2)+
(4} , one may interprzet (7) just as the energy density of a nonin-
teracting two~fluid mixture in the old scheme ("gamma-law"): for
A=1 and vy = 4/3, we have dust plus radiation. From now on, we
consider arbitrary constant vaiues of A and ¥y, and : search out
analytical solutions to the full system of equations (2)-(4) and

(7).

First, we integrate (7) tb obtain

(R, 3
n=n \-g r (8)

where n_ is the particular value of n at R = R . Then, substitut
ing for n from (8) into (7), it follows that the variables p and
p may be eliminated from (2) and (3), yilelding a generalized se-
cond-order Friedmann equation for the scale factor R(t),

, (9)

RR + EI%Z : +.§1%3 £ - (y—l)% = 0

a first integral of which is
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3y-2

where B = AmnoR;/2. S0 we can express the energy density and

the pressure as functims solely of R:

3R ¥ 28 { & v
_ . o . R
P T RA\X, |}+ ﬁ(ﬁ‘) o A
o : O. Q
= 3d -11(_2) ] (12)
Rz \FR
s O

Notice that the functional dependence of p on R remains the .same
as in the usual FRW models, as should be expected from {6) and
(8) which are valid (at least implicitly)- on both formulations., If
B = 0, Egs. (9)-(12) reduce to those of the standard FRW models.

In this case, the unified solutions of (9) for all values of é
and y have recently been found by Assad and Lima® in terms of hyper

B

geometric functions. Here, for the sake of simplicity, we consi

der only the flat models (e =0). Following the procedure carried
out in Ref. (8), it is straightforward to show that the :solution
of (9) or, equivalently, (10) is given by

N/ 2

2R
28" £(R) +

t-t =3y (! *Ir 3R,

¥/ 2} 3(y-1)
ET?:TT(;.‘j 1 + (“) f(R)
(13)
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where tO = t(RO) and f (R) is the hypergeometric function

3 (y-1)
o r=1 : . 2B{ R

It should be stressed that, taking the limit B + 0 and using the

I'(c)I (c-a=b)
T (c-a)T (c~h)

- Y 0\ Y b
R=R{1+ —27- = o, | (15}
. &

of the usual FRW models with the "gamma-law" equation of state.®

identity® F(a,b;e;l) = , Eg. (13) furnishes the ex-

pected result,

parametric solutions. Defining a dimensionless quantity T by

R /2
dt = RO 'li"'o' ar f. (16)

and an auxiliary scale factor y by

R B Y1)/ 2 |
Y ~© RO "ﬁ; ; ! (17)

it follows that (9) may be rewritten (for e.= 0) as
y*" - wily =0 , (18)

where a prime denotes a derivative with respect to .1 , and we

have introduced the parameter

Ao\L/2 |
w = (—233—_3 ly-1} . (19)
2]
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For y # 1, the general solution of (18), valid alsc in the limit

w -+ 0, is

— «w Ssinhw(t+8)
Y = Y [N\)

o (20)

where Y and § are integration constants. Now, using the . ‘fizst

integral (10), one finds Y = 3R0|Y-1[/2,'and-choosing § =0, (17)

gives
2 .2
w1 | ¥OY-D) o y3(y=1)
R(T) = Ro(ir%—ll) (:-..i_r_%.y_m_) ¢ $§

whereas the cosmic time t is readily obtained inserting (21) into
(23),

9 (yL1)

2R ) T Sy I
- 3-(1’—?-) (3 [Y‘rll_)y._l (-'———Slnz w'r)y ! coshwtg(t) , (22)

with g(1) = £(R(t)) as given by (14) and (21). We remark that,

SR 4'2- q1/ 2
- QO W ]

by taking the.limit B + 0 in (21) and (22), the parametric solu-
tions of the standard FRW models are established in . an unusual

(nonconformal) time coordinate.

Some vhemmodynamical aspects and observable quantities. The tem-

perature of an expanding perfect fluid evelves according to'°7!?

M3
!
Iy

n
) p)n -I—l - (2301
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Now, using (7) and (8), we get, for any value of ¢,

R, (y-1) |
T=T\g" . (24)

where T0 = T(Ro} . Thus, the temperature of the . model  scales
with R_s(Y_l), just as in the standard FRW casel? However, it
is easy to show that the speed of sound v, is now a time-depen-

dent quantity, ag it should be:

2 _ e - —Yiy-l)p
Ve T X E%ﬁ ~ (y-1)Bmn+yp (25)

If B = 0, the constant speed vZ=y-1 of the standard FRW models is
recovered.
To illustrate some observational predicﬁions of the present .

model, we compute first the deceleration parameter.! Using Bgs.

{L0) and (11), and taking ¢ =0, we f£ind that ¢ = - RR/R? is
given by
: (y-1)B . :
. R, E(RO/R) +23./3noj_
where qrmﬁ = (3y-2)/2 is just the value of the parameter g in

the standard FRW flat case (B =0) for an arbitrary value of y.
Using the time coordinate t.. in which R(t) assumes the fom

(21) , an explicit expression .for q(tr) may be obtained:

q = 3Y=< ;2 - __:r__3(2-l) tanh?wT (27}
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In Fig. 1 we plot g as a function of t for several representative
values of y. Notice that the present value gl obtained from the
luminosity distance versus. redshift ralationmay be fitted by taking,
for instance, y = 5/3 (monatomic gas) or any of the nore re—
alistic y » 1, for that matter,

Finally, we remark that, since the metric evolves to the
standard dust-filled FRW universe for large cosmic ‘time, one
would expect that the age of the universe. is near the value of the age
computed by using the Einstein-de Sitter model. Ih fact, £ rom
Eg. (10} with € = 0, one finds for the present value of the

Hubble parameter,

2 2 ' .
Ho = HFRW,O (1L + 4a) , (28)

where H‘FRW,O = .':_'./_Ro is the Hubble parameter of the ::usual FRW
model (B =0) at R = Ro' and A = 2B/3R0. S8ince B = mnOR;/2, we
may tr:tke'mn0 L'y Pg v 3,1._10_31--g/cm3. ’._(galacti__c_:_mass density) and 1/R6 N

75.Km/s.Mpc to loosely estimate A . 0,03,
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FIGURE CAPTION

Fig. 1 - The deceleration parameter for flat models with distinct

values of y.
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