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Abstract

We propose a new stochastic algorithm (generalized simulated annealing) for computation-
ally finding the global minimum of a given (not necessarily convex) energy/cost function
defined in a continuous D-dimensional space. This algorithm recovers, as particular cases,
the so called classical (“Boltzmann machine”) and fast (“Cauchy machine”) simulated an-
nealings, and can be quicker than both.

Key-words: Simulated annealing; Nonconvex optimization; Gradient descent; General-
ized Statistical Mechanics.
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1 INTRODUCTION

The central step of an enormous variety of problems (in Physics, Chemistry, Statistics,
Neural Networks, Engineering, Economics) is the minimization of an appropriate en-
ergy/cost function defined in a D-dimensional continuous space (Z € RP). If the energy
is conver (single minimum), any gradient descent method easily solves the problem. But
if the energy is nonconvezr (multiple extrema) the solution requires more sophisticated
methods, since a gradient descent procedure could easily trap the system in a lecal min-
imum (instead of one of the global minima we are looking for). This sophistication must
necessarily involve possible “hill climbings” (for detrapping from local minima), and can
be heavily computer-time-consuming. Consequently, various algorithmic strategies have
been developed along the years for making this important problem increasingly tractable.
One of the generically most efficient (hence popular) methods is simulated annealing, to
which this paper is dedicated. In this technique, one or more artificial temperatures are
introduced and gradually cooled, in complete analogy with the well known annealing tech-
nique frequently used in Metallurgy for making a molten metal to reach its crystalline
state (global minimum of the thermodynamical energy). This artificial temperature (or
set of temperatures) acts as a source of stochasticity, extremely convenient for eventually
detrapping from local minima. Near the end of the process, the system hopefully is in-
side the attractive basin of the global minimum (or in one of the global minima, if more
than one exists, i.e., if there is degeneracy), the temperature is practically zero, and the
procedure asymptotically becomes a gradient descent one. The challenge is to cool the
temperature the quickest we can but still having the guarantee that no definite trapping
in any local minimum will occur. More precisely speaking, we search for the quickest
annealing (i.e., in some sense approaching a quenching) which preserves the probability
of ending in a global minimum being equal to one. The first nontrivial solution along this
line was provided in 1983 by Kirkpatrick et al {1] for classical systems, and was extended in
1986 by Ceperley and Alder [2] for quantum systems. It strictly follows quasi-equilibrium
Boltzmann-Gibbs statistics. The system “tries” to visit, according to a visiting distribu-
tion assumed to be Gaussian (i.e., a local search distribution)} in the neighborhood of its
actual state . The jump is elways accepted if it is down hill (of the energy/cost funtion);
if it is hill climbing, it might be accepted according to an acceptance probabilily assumed
to be the canonical-ensemble Boltzmann-Gibbs one. Geman and Geman [3] showed, for
the classical case, that a necessary and sufficient condition for having probability one of
ending in a global minimum is that the temperature decreases logarithmically with time.
This algorithm is sometimes referred to as classical simulated annealing (CSA) or Boltz-
mann machine. We easily recognize that, if instead of decreasing, the temperature was
maintained fixed, this procedure precisely is the well known Metropolis et al {4] one for
simulating thermostatistical equilibrium.

The next interesting step along the present line was Szu’s 1987 proposal [5] of using
a Cauchy-Lorentz visiting distribution, instead of the Gaussian one. This is a semi-local
search distribution: the jumps are frequently local, but can occasionally be quite long
(in fact, this is a Lévy-flight-like distribution). The acceptance algorithm remains the
same as before. As Szu and Hartley showed, the cooling can now be much faster (the
temperature is now allowed to decrease like the inverse of time), which makes the entire
procedure quite more efficient. This algorithm is referred to as fast simulated annealing
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(FSA) or Cauchy machine.

The goal of the present work is to generalize both annealings within an unified picture
which closely follows the recently Generalized Statistical Mechanics [6, 7], with the sup-
plementary bonus of providing an algorithm which is even guicker than that of Szu’s. In
Section 2, we briefly review this generalized thermostatistics, describe the optimization
algorithm and prove that, if the cooling rithm is appropriate, the probability of ending
in a global minimum equals one. In Section 3, we numerically discuss a simple D =1
example. Finally, we conclude in Section 4.

2 GENERALIZED STATISTICAL MECHANICS
AND GENERALIZED SIMULATED ANNEAL-
ING (GSA)

Inspired by multifractals, one of us proposed [6] a generalized entropy S, as follows

1-3"pf
=k —— y 1
where {p;} are the probabilities of the microscopic configurations and & is a conventional
positive constant. In the ¢ — 1 limit, S, recovers the well known Shannon expression
—kg)_, pilnp;. Optimization of this entropy for the canonical ensemble yields

pi = [1 — ﬁ(1£,Q)E5]1_‘ (2)

with N
%= 3 1L (L - B ©

where 8 = l/kT is a Lagrange parameter, and {E;} is the energy spectrum. We im-
mediately verify that, in the ¢ — 1 limit, we recover Boltzmann-Gibbs statistics, namely
pi = exp(—PE;)/ 2, with Z; =) exp(—BE;). This generalization (i) satisfies appropriate

]

forms of the H-theorem [8-10], Ehrenfest theorem [11], von Neumann equation [12], quan-
tum statistics [13], Langevin and Fokker-Planck equations [14], fluctuation-dissipation
theorem [15], single-site Callen identity [16], Bogolyubov inequality (17}, criterion for
nonparametric testing [18], black-body radiation Planck law [19]; () has been illustrated
for the two-level system [6, 20], harmonic oscillator [20], free particle [21], d = 1 Ising
ferromagnet [22, 23], d = 2 Ising ferromagnet [16, 24], ideal paramagnet [25], Larmor
precession [12]; (#i) has received successful physical applications for two systems, namely
the polytropic model for stellar matter [26], and the Lévy flights [27] (see also [28, 29]).

Let us now focus the acceptance probability Py, (#; — Zi41), where t is the discrete time
(t =1,2,3,---) corresponding to the computer iterations. For the Boltzmann machine
(g4 = 1) we have

1 if E(F41) < E(2:)

Pl(x‘ —+ :FH-:I) = { 1+c-[E(!¢)--é(’¢+l)”Tf(’) if E(§f+1) > E(Ef,) (4)
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where T{(t) is the g4 = 1 acceptance temperature at time ¢ (k = 1 from now on). We
see tha.t T{‘(t) = +0 imp].ies P1 =1 if E(fg.}.]) < E(f-g), P] = 1/2 if E(EH.I) = E(.‘Eg),
and P, = 0 if E(Z41) > E(Z,). We see in Eq. (2) that exp(—BFE) is generalized into
- [i-p(1- q)E]l'l?, hence Eq. (4) must be generalized into

1 if E(#:41) < E(Zy)

P, (i‘,qé‘m):{ 1 if E(Z.41) 2 B(Z (5)
4 1+[1+(QA-1)(E(5':+1)-E(ft)]fra]alzr ( H-l) - ( t)

Although it is possible to work under generic conditions, for simplicity we shall as-
sume here that E(Z) > 0 (VZ). Moreover, we shall assume that g4 > 1, so TA()
can decrease down to zero without any type of singularities. Within these hyphothesis,
P,, € [0,1] (Vqa), and, for TA(t) decreasing from infinity to zero, P,, monotonically
varies from 1/2 to 0 if E(&:41) > E{(Z;), and equals 1 whenever E(Zi 1) < E(&,).

We can now focus the T; — T4, isotropic visiting distribution g,, (Az,) where Az, =
(Zi41 — Z1). It satisfies

[~ dp 17 g0, (o) =1 (6)

where Qp = DIIP/2T (% + 1) is the D-dimensional complete solid angle. For the Boltz-
mann machine (g = 1) we have [1, 5]

(Az‘)2
a1(Az;) x exp V() (7}
where TY (1) is the gv = 1 visiting temperature at time ¢. Using condition (6) we obtain
Axg)?
e T 8
(820 = Iy PR ©
For the Cauchy machine (gv = 2) we have [5]
Ty (1)

92(Axy) (9)

T I OF + (Ao}

where T (t) is the gy = 2 visiting temperature at time ¢. The functional form of Eq. (9)
is the D-dimensional Fourier transform of exp{—77 (¢)|#]} (see [5]). Using condition (6)

we obtain
r(28) Ty (t)

Az) = —r : 10
w820 = "2 TR + B a0
Within the present scheme, a natural proposal for unifying (8) and (10) is
TV (1))
s (A2 a0 (1)

= T OF + (v - DAz}

where a, b,¢,d and e are (qy, D)-dependent pure numbers to be determined. Using con-
dition (6) and recalling that Az; may carry dimensions (e.g, [length}) we immediately
establish that

2a — D(gv - 1)

d=e 2(qv —1)

(Vgv,¥D) (12)
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To further decrease the number of independent pure numbers to be determined, let us
address a central point, namely the fact that the method has to guarantee that, at the
t — oo limit, the system must be at a global minimum. For this to occur (see {5] and
references therein) the state visiting must be “infinite often in time (iot)”, which indeed

0
occurs f Y gq, (Azy,) diverges for fixed Az, with to >> 1. Under these conditions we
t=ip

have that

3 g (Aai) o SITY B W)

t=ip t=tp

We know [5] that, for arbitrary D, TV (¢) = 7Y (1)In2/1n(1 + t) and 77 (¥) = TY (1)/4,
which are conveniently unified with

TN = Tl e (1)
~ T,v(l)zq:;_'l'l (t = 00) (14')

Replacing (14°) into Eq. (13) we obtain

Y g (Azy) x D Tv0d (15)
t=tg =iy

For arbitrary D and gy = 1,2 it is [5] (gv — 1)d = 1. We assume, for simplicity, that the

same holds Vqy, hence |

gv—1

consequently the series (15) is the harmonic one, hence diverges (logarithmically) as de-
sired. If we use Eqs. (12) and (16) into (11) we obtain

[Ty, ()] 7=P=

(Vgv, VD) (16)

(17)

Jav (Aze) = ¢

-
{1+(qv—1)b (8z0)7 }

[Ty, (==

For qv = 1, Eq. (17) must recover Eq. (8), hence =1 and a = 1 (for arbitrary D). For
gv = 2, Eq. (17) must recover Eq. (10), hence b =1 and a = 2§ (for arbitrary D). For
simplicity we assume

b=1 (Vav, VD) (18)

Finally, condition (6) univocally determines the normalizing pure number ¢ as a function
of the rest of the free parameters. Using this and Eq. (18) into Eq. (17) yields

gv—1 }'_vi-r___ (19)

T

dov(Aze) = (qv—l)wz I,F( ) iy ki

(llvc-l - %) (Az,)?
1+ (qv—1) :
(73, () 2o av=
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where only one undetermined pure number (namely a(gy, D)) is now left. It satisfies, as
already mentioned, a(l, D) = 1 and a(2,D) = (D + 1)/2. Although more general forms
are possible, we shall adopt the simplest gy-dependence, namely a linear interpolation,
hence

D-1 |
e=1+——(v-1) (Vqv, VD) (20)
Replacing this into Eq. (19) we otain our final visiting distribution
D-1 V g
_ (=PI (Ga+ 5 (T3 () =
020 = (2=) T S z ——z (Yav, Vo)

T ]
i 2)

The second moment of this distribution diverges for gv > 5/3, and the distribution
becomes not normalizable for gy > 3.

There is no particular reason for T‘:, being equal to T but, following {5], we shall
use here the simplest choice, i.e., T"( ) = T (%), Vi (glven by Eq. (14)). We can
now summarize the whole a.lgorlthm for ﬁndmg a global minimum of a given energy/cost
function E(Z):

(i) Fix (qa,qv). Start, at ¢ = 1, with an arbitrary value #; and a high enough value
for T,, (1) (say about 2 times the height of the highest expected “hill”of E(Z), and
calculate E(Z,);

(ii) Then randomly generate ;4 from %, by using Eq. (21} (see Appendix) to determine
‘the size of the jump Az, and isotropically determine its direction;

(iii) Then calculate E(Z;41):
If E(Eg+1) < E(j.g), replace .'E.g by EH'I;
¥ E(Z:4+1) > E(&), run a random number r € [0,1]: if r > P, given by Eq. (5)
with TA (t) = T;, (1), retain #,; otherwise, replace ; by Zt41;

(iv) Calculate the new temperature T, using Eq. (14) and go back to (ii) until the
minimum of E(&) is reached within the desired precision.

3 A SIMPLE D=1 ILLUSTRATION

In this Section we numerically treat a simple D = 1 example with a double purpose: on
one hand to exhibit how the procedure works and, on the other, to find for which pair
(qv,qa) the algorithm is the quickest. (We recall that (qv,g4) = (1,1) corresponds to
CSA and (2,1) to FSA).

We choose the same example treated in [5], namely
E(z) =2' - 162 + 5z + E, (22)

where we have introduced the additive constant Fy =~ 78.3323 so that E(z) > 0, Vz,
thus satisfying the convention adopted below Eq. (5); see Fig. 1. As initial conditions
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for all of our runs we used z; = 2 and T, = 100. In Fig. 2 we can see typical runs
for g4 = 1.1 and different values of gy. Clearly the case gy = 2.5 is much faster and
precise than classical and fast annealings (gv = 1.1 ~ 1 and 2 respectively). To study
the (gv,¢4) influence on the quickness of the algorithm we have adopted once for ever,
an arbitrary convergence criterium. For each (gv,g4) pair we evaluate the mean value
of z; in intervals of 100 time steps. Whenever two successive intervals presented mean
values whose difference was smaller than a precision ¢ = 10®, we stopped the run. We
then evaluated the total iteration time 7 and repeated the whole annealing procedure
10 times. Finally, we compute the average total calculation time < 7 >. The (gv,q4)
dependence of the average < T > is presented in Fig. 3 for typical values of g4. Fig. 3
indicates that machines with g4 = 1.1 and gy = 2.9 are typically 5 times faster than the
Cauchy machine [5], which is in turn about 5 times faster than the Boltzmann machine
(1, 3, 5]. Finally in Fig. 4 we present the dependence of < 7 > with g4 for qv = 2; for
this case the Cauchy machine [5] is the best performant. These results indicate that the
quickest algorithm occurs for g4 = 1 and gy = 3.

4 CONCLUSION

Following along the lines of a recent generalization of Boltzmann-Gibbs statistical me-
chanics, we have heuristically developed a generalized simulated annealing (characterized
by the parameters (qv,g4)) which unifies the so called classical (Boltzmann machine;
gqv = qa = 1) and fast (Cauchy machine; gv/2 = ¢qa = 1) ones. This computational
method is based on stochastics dynamics (which asymptotically becomes, as time runs to
infinity, a gradient descent method), and enables, with probability one, the identification
of a global minimum of any (sufficiently nonsingular) given energy/cost function which
depends on a continuous D-dimensional variable . While the discrete time ¢ increases, it
might happen that F, provisionally stabilizes on a given value, and eventually abandons
it running towards the global minimum. This temporary residence can be used, as bonus
of the present method, to identify some of the local minima. If sufficiently many compu-
tational runs are done by starting at random initial positions {Z, }, this property could in
principle be used to identify el the local minima as well as all the global ones.

For simplicity, we have mainly discussed herein the restricted region gy > 1 and g4 > 1
(with E(Z) > 0, VZ), and have identified the (¢v,q4) ~ (2.9,1) machines as the most
performant ones in practical terms. This algorithm has been illustrated herein with a
simple two-minima D = 1 energy function, and has already been successfully used [30]
for recovering the global energy minima (with respect to the dihedral angle) of a variety
of simple molecules (e.g., C H3OH, H,0,, C3Hs). It should be very interesting to test
the present generalized algorithm with many-body systems presenting a great number of
minima (spin-glass-like frustrated systems, traveling salesman, neural networks, complex
economic systems).

We acknowledge N. Caticha for stressing our attention onto Szu’s algorithm [5], as
well as K.C. Mundim and A.M.C. de Souza for very useful discussions.
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APPENDIX: ON THE USE OF THE VISITING DIS-
TRIBUTION

The operational implementation of the step (i) of the GSA deserves a detailed discussion.
A.l - Size of the jump

The visiting distribution we are focusing is that of Eq. (21).
A.2 - Direction of the jump

D=1: We call a random number r; € [0,1]. If 0 < r; < 1/2, we adopt Z¢41 — 2 = |Azy),

if 1/2 < rqg £ 1, we adopt z¢4y — 2¢ = —|Axy|; if rg4 = 1/2 (almost impossible!) we
call a new ra.ndom number.

D=2: We call a random number r4 € [0,1]. Then the new position is given by
x8 = x® 4 1AX,|sin(27rg) (A.1)
x8 = xP4 |AX,| cos(27ry) (A.2)

D=3: We call two independent random numbers r{" € [0,1] and r$ € [0,1). Then the
new position is given by

x® = xM+]AX,|sin(2rr)) (A.3)
X,(_f,)l = XP +)AX| cos(21rr£l)) sin(2rr() (A.4)
X&) = x® +)aX,]cos(2rr$) cos(2rr(?) (A.5)

D>3: We call (D — 1) independent random numbers M, £, P~} all of them in
the interval [0,1]. Then the new position is given by

xD = xM 4 1aX,|sin(2xr]) ) (A.6)
Xt(i)l = X9 +|AX cos(2ar)) sm(27rr( )) (A.T)
X9 = X,{s) |AX;| cos(2mr{) sin(2xrlh) (A.8)
XPY = X (P-1 4 |AX, |cos(21rr(1)) cos(2rr{P)
. coa(2arP N sin(2ar{PM) (A.9)
X‘(fl} = xP 4 |AX¢| cos(2xr(") cos(2xr()
cos(2rriP D) cos(2xrP 1) (A.10)

The visiting distribution is parametrized by D, qv and Ty. Due to the annealing
procedure, g{Z; — #:41) becomes narrower at each time step. Consequently, at each time
step we have to generate randon numbers with a different probability distribution. This
may be very computer-time consuming and it becomes important to implement efficiently
this part of the algorithm. It turns out that, after a suitable change of variables, the dis-
tribution can be reparametrized in a way that it becomes independent of the temperature.
Then we can generate, once for ever, a table with the reparametrized distribution and
recover a random value at each temperature simply by performing a change of variables.
In this way we are able to attain, with little effort, gv values very near to 3, where the
norm of the distribution diverges.
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Caption for figures

Fig. 1: D = 1 energy function E(z) = z* — 16z% + bz + Eo vs. z for Ey = 78.3323;
global minimum z} = —2.90353 and E(z}) = 0; maximum: z} = 0.156731 and
E(z}) = 78.7235; local minimum: 23 = 2.74680 and E(z3) = 28.2735.

Fig. 2: Typical runs of the GSA algorithm z, vs. ¢ (annealing time) for initial conditions
zy = 2, Ty, (1) = 100. All four runs correspond to g4 = 1.1; a) qv = 1.1, b) gy = 1.5,
c) gv = 2, d) qv = 2.5. Notice the different scales for the ordinates.

Fig. 3: Average total calculating time < 7 > vs. gy for two typical values of g4 (A:
ga =15 @: g4 =1.1).

Fig. 4: Average total calculation time < 7 > vs. ¢4 for gv = 2.
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