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ABSTRACT

The use of feynman causal function in the perturbative treatment of
S-matrix made the computation of convolutions an easy and well known
procedure for free particle propagatoers. But the convolutlon of 1its
components, like the 8 and Principal values among themselves is very rarely
looked upon. In field theories with higher order equations of motlon some
of these convolutions appear as the fundamental Iingredients. A discussion

of these convolutions is explicitly done in the simplest examples.

Key-words: Convolution; Green functions; Self-energy; Higher order

derivatives; Field theory.

PACS. 10.14, 14.80.Jj, 14.80.Pb.
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1 INTRODUCTION

The universal use of the Feynman causal function in the perturbative
development of the S-matrix, made the computation of convolution of

propagators a standard precedure. But if we remember the relatlon

1

——5— =F=P+ 13 (p2+n®) (1)
p + -lo

(where P means principal value of (p2+m2fd); we see that the convolutlon
F,F of_ two causal propagateors could also be done through the previous
determination of PP, P, and §,8. Of course, this latter procedure is not
necessary for ordinary computations, nevertheless it seems Interesting to
have 1its results and to the best of our knowledge they have not appear in
the literature, at least explicitly and with génerality. Also, 1t was shown

elsewherell] that the propagator for the tachyon should be P (not F).

2]

Further, if we study a fourth-order equation[ with the propagator

(p*-nH)7t = _}E (p?-m®)! - —EE (pa+m2)-1, then with the adoption of Feynman
2m Z2m

propagator for the bradyon and Cauchy’s principal value P for the tachyon,
unitarity is preserved in the lowest perturbative approximation (at least)

(See ref. [23]). In this case we are naturally led to compute F,P and P,P.

The situation just pointed out could be general for higher order
differential equations of motion and this 1ls the motivation of the present

work.
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We shall divide the exposition of computations in two parts. In the
first one we shall only discuss ordinary particles (bradyons). In the
second part we study the modifications to be introduced in the convelutions

when one or both involved particles have complex masses.

PART 1. Convolutions of bradyon Green functions

This convolution can be computed in an easier way in the system in

which p2 = -pﬁ if p2<0, or in the system p2=pf if pz>0. In the first case:

6(p2+mf],6(p2+m:) = 61,62 = Jdvq 6(qz+nf)6((p-q}2+m:) =

V-1 2 ime-n
q . ,»2, 2 2 P 2

_{.v 2 2., 2 2_ 2 d =
—Jﬁ q a(q +ml)6[ pu+2poq0+m2 mi) =J—§T§;T é8(q +m1~q°], with q, __Tﬁir_

(2)

From now on, when we integrate over the angles in an euclidean v-dimensional

space, we use the formula:

2 [ —
Jdv-iq f(az) =K _ qua qz 2 f(qz} (3)
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-3-
From (2) and (3) we get:
o 2 22
x dg 2 2 2 =
sty = [ s
v-1 v=3
x 2 2 2 22 2
= [(p +m -m_) -mz] (4)
vl 0 1 2 1
2|y [TCZ)
2 2 o o
Where we can put P, = “P {>0) and [:1:]+ = ¥ when x>0 and zero otherwise.

When p2 is space-like (p2>0) we have:

v 2 2 2 2_2
61,62 d g 8{q +m1)6(p1-2p1q1+m2 m1]
- _1 v-2 _2,2 2 2
AR dq, -[d q 3(-q +q +q +n ) (5)
, ot
where q, means the component of q transversal to q and q, = %

1

From (5)
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_4_
v_;z— [} E:i 2 2 2 2
5 .8, = 1 n -[dqo"[dqz qz 2 6(—qo+q1+qt+m1)
1*"2 v=-2 t Tt
2|p1| r(T )

v-2
2 ] dl.'.]2 vt
- n 2 0 (qz_qz_mz} 2
v—-2 2 o 1 1
2|p, |T(=") ) 2,2 %
1
v-2 v

) _ L Jb dx x 2 (6)
- v-2 ’
2|p, ITG=) 4, Vx+q2em®

We use now Ref. [3], p.285

-]
A-1 - _ L A-p T(p-AT(A)
Jodx b4 (x+A) = A —I.(F)— (7}
and (6) glves
v-3
v-2 —

(8)

3-v,.,v-2 2
M=) (==) [(p,+m
4 2 2 1
61“62 l

C2lp Ir5D rh

F‘NNlN
B
= N
—t
N
+
)
(Wil 2
N
)
]
v
<
S

4p
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Note that for w=odd =z 3, (B) is divergent.

In order to compare with {4) we use:

n
I‘(z)l"(l—z] = 's—m (9)

When v 1s even (8) and (9) gilve:

v-1 v-'-; o=

_ R 2 (-1 ® (p +m — ) 2

5,08, = 2,172 e

. 2(p") I'( 5 )
»-1 v-3
L 2 2 2.2 2
- x? (p +m,-m.) _ mz]
2(-0*y D | e

which is formally similar to (4) with pzz—pa.

Comment. For the bracket in (4) to be positive it 1s necessary that
2,2 2 2 2 2
- >
(poﬂn1 mz] 4p0m1. It is easy to see that then, either p0>(m1+m2) , oOr
p§<(m1-m2}2. We may call “physical cut" the region (m1+m2)2<p§<m, and “low
energy cut" the interval 0<p§<(m1—m2]2. When the masses are equal the

low-energy cut desappears. Formula (4) shows that the convolution & ,3_has

support in both cuts (when p2<0).
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3 PP

With the usual definition of Hilbert transform:

) =] p-l fx) ax
° n X~y g

the following theorem holds
H(KH(L)) = =f

We can then write

w
- 1 - P
J dy P = P vz- " 3(x-2) (10)
-w

So we have:
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-7~
_ 1.V -1 1 _
Px'Pz_[dquzP 2 2
q+u (pq)Tem]

| ! 1 1 _ 1
- | 63 Joafp e = [ e )

- 2z 1d q - _ - _ _
lelf’2 - IM m [Btpo—m1 ”a) + a(po+”1+"’a} 6(p°+01 "’z) atpo "’1""3)]
(11}

with -

_ 22 2 _ [ a2 2
o =+ /qm ; w (p-q) R (12)

The supports of these &-functions do not overlap. They are mutually

exclusive. For the first two 8’s in (11):

and for the last two:
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The four cases are contained in

2 _ 2 2 22
(20102) = [p0 W) wal

For the rest system (when 0>p2 = -pﬁ] we get from (12).

»2 1 2 2 2.2 22| '
q 4—p2 [(po li-ﬂz) - 4m1m2] (13)
4]

The conditions for the bracket to be positive are the same as those for

(4). When P, belongs to the physical cut (p§> (m1+m2)2 we have

1 2,2 2 N | 2,2 2
w = 2p.] [pc.-l-lu1 mz) and w, fip_ol' {I:ic‘ﬂu2 ml)
[

(we take m =m_)
1 2

01 * u2 = |p0'

and only the first two &’s can contribute to (11).

If instead pﬁ((ml—mz)z, we get:
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w = 1 (pa+m2-m2) and w_ = -1 {mz-ma—pz)
1 2|po| o 1 2 2 2|po| 1 2 0

O "w = Ipol

and only the last two 8’s can contribute in (11). In any case it is easy

to perform the integration by a change of variables. For example, for the

first 3-function we have to divide by

i(p—u—n):—_}'—— ls—zpo
dqz o 1 2 2w1 2w 4w1w2

In thls way we obtain, after integration over the angles:

v-1 v-3
2 x 2 1 2 2 21° 2 21| 2

P1‘Pa =-EeW ———— 13 l(po—ml-—mz)] - 4m1m2] {14)
2|p, IT(5) \4p, N

where

(15)

€ = +1 on the physical cut p2=(m1+m2)2

(16)

€ = -1 on the low-energy cut pzs(mi-mz)z

A comparison with (4) shows that
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PGP, = -¢ z° 8.8, Af p<0 umn

2

When p2 is spacelike we go back to (11) assuming that the only component of

pp is P,- In this case we have

PP, = 2n° I d_ 9 8(w =) (18)

as the first two 8-functlions do not contribute {p0=0] and the last two are

equal.
Besides, when w o= (cf. (12)):

2, 2 2
P

q=__......_
1 Zp1
and
d{°1-wb) ) q1(”z-w1) + P ) El
dq ww w
1 W, =0 1 2 w =0 2

Integratlion of (18) over the angles {in the (v-2)-dimensional space of at)

glves:
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—-le
v-2
2 w_s' 2 2 E%S dql
P WP, = 2= -~ dq, qQ, oo Gtwh—wz]
{ > ) o 1 2
-
~ V- 1
2 2 2 2 2 2
* x? dqt(q:) 2  PR,m,
B v-2 W ’ @w=l9, * z v R
2|p1| r( 2 ) o 4p1
And, using (7}

via

v-3 2 2 2.2 2

{(p *m_-n)
2 2 3-p 2 1 2 2
PI‘PZ na F(T [ 4—pz + l1 . (p >0) (19)
Comparing with (8} we see that
_ .2 2
Pl,P2 = 51.32 (p™>0) (20)

Comment. 1t is perhaps unexpected to find out that Pi,P2 have, up to a sign,
the same value that nzal,az on the same cuts. Further, on the physical cut

P .F, = (in)zai,ﬁz. This has relation with unitarity.
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-12-

Here we shall use the decomposltion:

1
5(pZ+m’) = 3= [6{po—u) + G(pom)] (21)
and
1 1 1 1
F = [ + (22}
pz o 2w [w-po wpol _

Where in (22) the mass is supposed to have a small negative imaginary part.

d’q 1 1
8 . = S{q —w ) + 8{q +u ) — + —
1% 2 .4»102 | 9% 0 1] w, po-i-qo mz-l-pz qD-
I i O SR W SR S
J39%, _"’1“"2_1’0 WP, WTU TRy, 9T 1+po_
) Pl 2("1+wz] 2(:»2-141) 23)
40 w 2 2 2 2
JT1 _(ulma) p, (v - ) -p,
2 2 2
s F =‘[dw-iq 4"3{“’3_“’1-1)0) (24)
1% 2 qu w 2, .2 2.2 2 2
1 2 {ul-mz po] G.w!wz
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-13-
where w, and v, are given by (12). In the rest system (p2<0) we can use
{3).

v-2
L 2 2 2 2
8  F = = Jb dqzqz {mz-ml-pOI {25)
1% 2 V-1 ) 4 2,2 2 2 2 2,2
F(-E—) 1 P, 2p°(2q +m1+n2) + (m1 nz}
The integration can be carrled cut with the ald of:
- .
b-1 . a-C -a _ I'(b)T{c-b) _-a _ |
{ ds s (1+s)” (1+sz) " = ] 2 F(a,c-b,c;1 ;) (26)
The result of (25) is:
vt
v-2 2, 2 2 2 22
2 A-p, V1! 2 2 2 a-v 3 (Pp'mm)
61‘F2 = R F(T) 3 (p°+m1-mz)l~'-'(1, 3 3 2 2 ) (27)
2po 4p°1n1

(F(a,b,c;2) 1s the hypergeometric function).

Comment. According to the remark made just after (22), the mass m, in (27)
has a small negative imaginary part. The argument of the hypergeometric
function in (27) has then a small positive 1imaginary component. As
Fi(s,b;c,z) has a cut for z real >1 (Cf. ), the real axis should be
approached from above. If the limit is taken from below, the convolution of

61 with the anticausal Green-function F;, is obtained.
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-14-

S P_F

We shall use {22) and, Iinstead of (21), the principal value

deconposition:

1 : 1 1 3
P = — P + P _ (28)
1 2:.11 [ “1 P, mif-po] :

which was already utilized in (11)}.

d’q 1 1 1 1
P F_ = P + P — + —
1% 2 40192 [ w -q, wl+q°] |:w2+po+qo wz-rpo-qo

Consulting now a table of Hilbert transforms, taking into account the small

imaginary part of w, (due to that of mz), we obtaln:

v-1
P1'F2=i" iwwq u-l-:r-p +w+:r+p -w-:i-p _u-:H-p
12 |1 2% 1 2°0 2 1% 2 170

_ dv-iq Z(wl-mz) 2(03-&1)
il brryem 2 2 2 . a (29)
12 {w1m2) -P, (”z""1) P,
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-15-

v-1 A {wz-wz-pa)
[ [l o

v @ 2 2 2.2 22
12 (uzﬂf'z pol w&

A comparison of (29) with (23}, or (30) with (24), shows that we have the

equality:

in 3_,F on the physical cut o
P,oF, = _ (31)
in 62“‘171 on the low energy cut

So we can immedlatly write (Cf. (27)):

v n? P4 (pz +m2-m2)2
- 2] 2 2, 2 2 4-y 3 Yo "2 1
Pl‘FZ = in F(T)[ ;—-2-] (p0+m2 mi )F[l g i, s 2m2 (32)
Po Po™z
Comment . The relation (31) can also be deduced from the identity

P JF,=1nF, 8 +P P +n°8 ,5 . Also, in (32) the limit of the argument of the
hypergeometric function should be taken from above on the physical cut and
from below in the low energy cut. 0Of course, Pl,i':‘z can be obtained by

complex conjugation.
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For this convolution we shall follow the same steps as with 3, F. Ve
take (21) and (22), but this time the mass m, will be taken as real, and the
principal value will be adopted at the singularity. Formulae (23), (24) and
(25) are still valid, but for the principal value evaluation of (25) we go

again to the table of Hilbert transforms and find: See ref. (61

% Imdx x“'a(x+a]1'3 P ;%; = ya’i{y+a)1'ﬂ ctn [(B-a)x] -

o

o 1-B+a '
_ r(ﬂ o I]F(a}a F(Z-B. 1 2_B+¢; %) y)o
n F(g-1)(y+a) Y
or
-1
l‘(B-a)l"(a)(:Y) F(B-1,a,8;1 + {.} y<O (33)

n T(B) a.B"1

Now we write {25) in the form:
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v-.1 2 2 2 y-3 4 2,2 2 2 2.2.-1
X BTRR, x 2 p0—290(‘x+m2)+(m1-m2)
3 dx Plx (32)
2o rZh  4p? ap?
2 po 0 K+m po
v-1 3 _ 1 2 2 2..2 ,22
To use (33) wechose a = —, B, a=m, vy=— |[(p-(m+m )) -4mm_|,
2 2 2 4] 1 2 12
4p
o
1 2 2 2.2
y+a = — {p —m_+m_)".
4pz o 2 1
V)
For positive y we have:
vl
V-3 1
x 2 'y T2 4
3 P (y+a) {y {y+a) ctn |== -
1* 2 r(!Zl 2
2
v-3
AT, 1, .
- 1 F(E, 1; E; y+a) [35]
® T(3)(y+a)
While for negative y we get:
v+1 v-3
4-v. . v-1 v
2 - Fr=") (-y)® 1 v-1 3 y+a
s P (y+a) 5 53 53 — (36)
1* 2 -1 3 1/2 2 2 2 a
rés) nrG) a

Comment.

of the hypergeometric functlion.

In paragraph -9- we will learn how to evaluate the imaginary part

With this knowledge it is possible to find
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3,P by taking the real part of 8*F or also by taking the imaginary part of

P,F.

The conveolution of two Feynman propagators can be computed in the usual

way by means of dimenslonal regularization:

1

-2
1“1,,1"2 = [dvq 21 2 12 3 = Idvql dx [(q2+mf)x + ((p-q]z-l-m:]{l-x]] =
- g+ (p-g) +m o
V-4
v 1 =z
= in° l"(d‘z;v)J dx [paxtl—xli-mfxi-mf(l-xi] (37)
0

The masses are both supposed to have a small negative imaginary part. The

roots of the quadratic form in (37) are

N 22-p?12 2
_1 1 2)]|- /1 12 2
xl‘z[“ z]* I[“ z]*—z (38)
p P p
v 1 =
_ 2 A-v 2 _ -
FoF, = in" I'(=") J dx [ P (x-x ) (x le]

0
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-19-

_4 V=
x2 4

= l"(—-—) J)dx[-p (x ~x) (x -x)] + [ dx [pz(x-xlltxz-x)] :

x
1

v=-4
1 _—

2
+ Idx -pztx-xi) (x-xz]] (39)

Each of the integrals in (39) can be written down with the ald of a table.

V-4 —_— == —

LRI | O Ty Cac B PN ¢ S EE
F.F = im 1..(4 4 2 2 (pz) (x.-x.)" 3,2 1 2
1* 2 Ir'(v-2) 2 "1 v=2
v w2 v
2} 2 2 2
e(4 v v X, .2 [ p] [1 xal [1 x1] e[ 4v v l-xz
22 v-2 2 ’2'x2-x1

(40)

And, after a quadratlc transformation of the hypergeometric function:

Ft“Fz = 11: 2,1/2

—l" l..v-zl..v—-z 2__2y2
(2)(2)(2)p1+m1m2]+4m2
r(v-2)(p"}
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-20-
b2 3
v 2, 2 2 2,2 2 2 2
2 A4-v, 2 (mz) R im, 1 v-2vp 4n_p
" I ) v-2 2 1+ 2 MY Fl3» 53232 22 22
(-p) P P (p +m-m ) +am
v-2 2
v 2, 2 2 2,2 2 2 2
z v, 2 &) mom 4w, 1v-2v n p
+in I"( ) 1+ * — F » H-4
27 p-2 2 2 2 2'2' 2 2 2.2 , 22
{-p~) P p (p "‘1""3) +Anp

Comment. The conditions for the roots (38) to be real, are the same as

those for the square bracket in (4) or (8), to be positive.

This convolution can be computed by using (1) and its complex

con jugate.

— _ 2 _
FoF, = (P +in8 ), (P,-in,) = P P +x'8 .3, + In(3 ,P -3 ,P ) (42)

We see that the real part is symmetric, while the imaginary part is
antisymmetric under the linterchange of m and m,. Of course for F ,F,

both parts are symmetric in the masses.
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F,oF

= - :
g = P eP, 73 48 +1x (5 P +3 ,P ) (43)

The real part of (43) has support on the physical cut only, while the
real part of F:,F; 1s zero on the physical cut (has support on the

low-energy cut and in p2 space-like).

For the actual value of F1‘F2 it is enough to use (4) or (8), (14) or

(20) and (35) or (36) in (42).

Comment . It 1s equally possible, instead of (42), to use the equallty
F2=F2—21u62, to obtain F1,F2 = Fi*Fz-Ziu Fl,az. Of course, there are

others equivalent expressions. If m =m_; FxF = 0 in the physical cut
2n°8,5 otherwise.

9 ABSORTIVE PARTS

The so called “"absortive part” of a convolution, can easily be obtained
from the hypergeometric function when its first or second parameter is equal
to unity (or can be reduced to unity by an appropriate transformation). In

such a case we take the integral representation

dt (aa)

1
P ) > (1-¢)° !
F(llb’C.Z) = r b r C"'b l l_tz
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The physically interesting imaginary part of (44) is developed at the

singularity which appears when z=x+ic; xzl, £=0.
As Im(1-tz)™! = 2 n8(1-tx), we have

1

ImF(1,bsc;z) = & ﬂg% [ £ (1-0)" > Y5 (1-tx)dx

0

IMF(1,b,c;2) = * ﬁﬁ% x""(x-l)f"’_" , z » xtie ' (45)

With (45) we can take the imaginary part of (27), whlch is seen to coincide

with Im ,F, = n3 .8 Also, the imaginary part of IP ,F, (CE. eq. (32)),

5°

is seen to colncide with -Pl,Pa.

Eq. {45) can not be applied directly to (41), but after the

transformation:
Fla,b;c;2z) = (1-2)™" F(a,c-b;c;2/(z-1))
We have
")
22 2. 2 2.2 2 2 2

F(l v-2 v, 4m2p = [ (p =y mz) ] F[l 1.7, -4mép ]

» T2 ' 2" T, 2 2 2.2,, 22 2 2 2.2 .22 2'0'2° 2 2 2.2

(p +m1-n2) +4ﬂéP (p +m1—m2) +4m2p (p“+m -mz)
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whose 1maginary part 1is different from =zero for p2 time-1like and

2.2 2.2 2 2
(p +m, mzl < 4m2p .

Comment: When the first parameter of the hypergeometric functlion is an
integer n, eq. (44) has the dencminator (1-tz)" instead of just (1-tz), The

{n)

imaginary part is then proportional to & (1-tx) and (45) is modiflied by

taking the (n-1)-th derivative of the x-dependent factors.

DISCUSSION

Whenever a propagator can be presented as the addition of two
1nterésting parts, like principal value and &-functlion, its convolutions can
also be decomposed in pieces whose actual computation can shed some light on
aspects of the coriginal one. Moreover, in field-thecries with higher order
equations of motion some ¢f these partial convolutions appear as fundamental
and have to be computed independently of the more usual ones. This is the
motivation behind the present work. Anyway It lis Iinteresting, or amusing,
to find out that the structure of P*P is very similar to that of n25*5.
They have the same support and the same absolute wvalues. They have
different signs outside the physical cut. In this way they only leave the
physical cut in the convolution F*F. Of course, this Is related to unitary
as the imaginary part of F*F has to do with the scattering cross section of

bradions.

Something similar happens with the convolution of 8,F and P,F. As a

matter of facts we will see in the forthcomlng second part of this work that
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=24~
d and P are distributlons whose structures are similar and éan both be

represented és integral fucntionals that differ in the domain of integfation

‘on the energy-plane. One of them (3) being closed and the other (P) open.
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