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ABSTRACT

The global dynamical aspects of a supernova event is studied in terms of an effective La-
grangean formulation. The equation of motion derived from this Lagrangisn is solved numer-
jcally for diferent supernova core masses. An equation of state for cold mstter is introducea
by means of an adiabatic index parametrization which is & smooth function of the maiter den-
sity. The energy transfer from the inner to the outer core is estimated in the comext"-:-'f f:he
hydrodynamic bounce mechanism. It is found that only a very restricted mass dissnoutiod
to pre-supernova core configuration generate a strong enough shock wave leading to 8 PTOMP
bounce ejection.

KRey-words: Effective Lag_rangian; Supernova Boumce; Shock wave,
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I. INTRODUCTION

The study of superncva processes has attracted a great deal of interests in the fieid of
high energy astrophysics for many years {141 ; in special, very recently the nentrino and opticai
observation of SN198TA have rosen the opportunity to test some aspects of current supernova
theories. The study of such = violent event is expected to give an insight not only to the
property of nuclear matter at extreme conditions of density and temperzture, but alao to the
phases transitions of the hadronic matter.

A supernova is an event related to the sudden and catastrophic death of a massive siar
(8 ~10 < M/Mg < 60 —100), at the end of its evolution, which may lead to the formation of 2
neutron stars or a black hole. However, in spite of many theoretical investigations, we stiil face
several controversial points of view concerning the basic mechanism determining the event of
supernova explosion. This is mainly due to the very complicated nature of the hydrodynamicai
calcnlation including shock wave formation and several unknown fundamental factors. suct
as neutronization processes, nuclear matter equation of state, neutrino opacity, thermonnclear
explosive foel, etc. In fact, the quantitative results of those calcuiations are sirongly dependen:
on these factors (111, If the phenomena really is such a critical one, it seems unlike to jostify
the rather regular occurrence of supernova events in the Universe. In our opinion the expiosion
mechanism should have a more general origin which can be undersiood in terms of the pre-
supernova configuration and the global properties of stellar dynamics, without depending on
the very details of a particular model.

It is well known that the gravitational collapse of the pre-supernova core i triggered by
endothermic processes such as e-capture and/or photo-disintegration of nuclei, leading o an
almost free fall motion of the core. In the ultimate instants of this collapse, the stellar matter
density attains a value even higher than that of the nuclear matter equilibrium. However. the
essential and basic question is how the viclent implosion is suddenly inverted into equaily ar
even more violent expansion and subsequent ejection of matter. Several possible mechacisms
have been proposed, and we may classify them as follows:

1. Hydrodynamical bounce with shock wave formation;

2. Nuclear fuel detonation with shock wave propagation;

3. Energy and Momentum transfer from the core to the envelope by neutrinos;
4. Stellar rotation and magnetohydrodynamical effects.

Here, we are interested in investigating the kinematical aspects of the explosive mechanisr
and its relation to the general feature of the stellar matter equation of state. Therefor=. we
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avoid introducing any mechanisms which depend explicitly on microscopic processes, and we
will concentrate ourselves to the first type of mechanism, i.e.,hydrodynamic bounce.

Usnally, the hydrodynamical equations of motion for supernovae have been solved by trans-
forming the corresponding partial differential equation into a finite difference equation. This
procedure requires many vatiables to be treated in order to keep a good mathematical approx-
imation for solving numerically the hydrodynamics of the system with shock wave generation.
Although sophisticated computer codes can solve satisfactorily the problem, many physical as-
pects are masked by the inumerous variables unnecessary for the specific study of, for example,
shock wave generation. In order to investigate general aspects of shock wave formation, it ig
worthwhile to develop & more phymca.l approximation procedure specific to it.

In this work we establish a physical mapping of the hydrodynamic equation into a few-
variable effective Lagrangian system in order to avoid an approximation merely based on math-
ematical arguments. In this sense, our main interest is not to discuss the local properties of
hydrodynamic evolution of the system, but to describe the more global nature of core exploston,
namely the separation of its mass into a remnant neutran star and the exploding outer shell, as
well as the amount of energy transfer from the inner to the outer core.

In the following section we construct the effective Lagrangian for our model and derive
the equation of motion of the eystem. In Section III, we introduce a simple parametrization to
describe the equation of state of the stellar matter, and we show some examples of application.
In the last section, we discuss our results.

II. THE MODEL

As illustrated in Fig.1, we divide the pre-supernova core into n- shells, characterized by
their radii £ = {Ry, Ry, ..., Rn] and mean densities {p, p3, .- -1 Pn}. Their masses,

= _ﬂt(Rls R?—1): i=1,.,n 8}

are kept constant in time. In this equation, Ry = 0 by convention.
Neglecting possible energy loeses, we may write the Lagrangian of the system,

£ = DR, () @
=K - Vg — Ein ’
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where K represents the kinetic energy associated with the hydrodynamic motion of matter, Vg
thé total gravitational energy and E;,, the internal energy. The quantities X and E;,; are the
sum of the contribution from each shell, namely, K = 30, Ki and E, = Sy Ei . The
kinetic energy of the i-th shell is calenlated as

Ki=j [ #7 sl (®

where #;(F) is the velocity field inside the i-th shell. The velocity field can be determined from
the continuity equation. For a spherically symmetric homogenens shell, we get

- (RiR? "R*-IR?—l)'s_‘l'_(_Rf-lR?—tm"k‘RfR?-l) . . )
U(r) = rg(fz‘a - -R?-l) , Rt £ < R; (4)

which satisfies the boundary conditions oir=Ri1) = R;_q, and v(r = R;) = R; . Again for
i=0, the convention Rg =0 and Rg=01is sssumed.

With this velocity field, the kinetic energy of the i-th shell is calculated as

_ 3,5 o (T T2\ [ Ries
k=20 2 (B Y (%) ®
where
T _ b regt+3(+1 (6 —a)
11 — (1+{+€2)3 13 L
o 383+ _
Tiz=Tn=g3 EYEYIE m;; CEd))
_ (33 +6E+8) -
1‘22— (1+£+£3)3 My, (6 C)
with e = .R..'/R,'_l.

The gravitational potential energy is found to be

Vo= =G Y omif(6) + 3 MialE)lms/ R, ™ .

=l
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where G is the gravitational constant, and

£(6) = 308 + 48 + 66+ /(L +£+6),

9(&) = (1 + &)/ + £+,

with
fori=1;

0,
"",’*‘“"{ i=imy fori>2.

The first term in Eq.(7) represents the gravitational self-energy of the i

term comes from the interaction among the shells.
The internal energy of each shell is expressed as

E; = m;e; [ pi,

th shell, and the las

(8!

where ¢ is the volumetric energy density of the i-th shell given by the equation of staze as s

function of the density .

The Euler-Lagrange equation leads to the following equation of motion,

R _ Q£ 7

where T" and @ are n x n matrices given by

T o o
¥ 19 +1 1Y 0 -
R
= 0 0 o . '

E E _ 0 I.(n-—l) Tu(n-1)+ ul
\ o oo 0 0 i)
and
Q = -iTs

e
0 )
o | (103
T‘
22
(1
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where T is the matrix element of i-th shell given by Eq.(7). The force term P is given as

F=

(=B - PR - SIMMD + MY + Hm M) + madhiiV)] )
Be(p, - PRS- MBS + MIF( + §(maMagl?) + maMagl”)]

. (12!

20 (P, - Ry BF — UMY + M s + $miMigd) + mina Mg 40y

\ 22 P RY - M2 + §maMagl”)] v
where P, represents the pressure of the gas in each shell, and

f-')_iiﬁi"'_f‘*'_ll.
721 +6+8)

G _ (2 +3¢ +6£+5)
: (r+e+6p

(3) 2 +1
g = g
VT a+E+%

o = £+2)
P4+ E?

At this stage, the partial differential equation of hydrodynamic motion is converted into a set o
second order ordinary differential equations. This mapping is a physical one in the sense tha:
the total energy of the system is strictly conserved holding the effective mesning of the variables
associated to each shell. Note that our equations of motion reduce agein to the hydrod ynam:e
equation in the limit of n — co. Due to this physical nature of our Lagrangian, we expect thes
the global behavior of stellar core dynamics can well be described without introducing many
subshells in the calculation. In particular, in this paper, we are interested only in the study o
the kinematical aspect of shock formation which separates the core into the remnans neutroz
star and the exploding outer shell. Therefore, we may take the simplest case, n =2, withom
apoiling the basic physics of the process.

The equations of motion are then numerically integrated for a specified initial configuration
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III. BOUNCE SHOCK GENERATION

The gravitational stability of the iron core prior to the onset of the collapse is basically
supported by the degenerate electron pressure whose adiabatic index 7 is close to 4/3. Iz this
electronic phase we safely neglect contributions from eventual free nuclei and nucleons. For
higher densities, due to the e-capture and/or photo-disintegration reactions, which rednce the
pressure, the core becomes gravitationally unstable, and the collapse sets in. The incremse of
density accompanying the collapse further neutronizes the core matter, and the effective adia-
batic index becomes smaller than the critical value 4/3, leading to an almost free-fall coilapee.
On the other hand, when the density reaches a value close to that of the equilibrium nxelesr
matter, the equation of state suddenly siiffens and the adiabatic index 7 rises to over 4/2. At
this stage, the collapse is halted due to the high incompressibility of the nuclear matter ard the
bounce will take place.

In order to simulate the above properties of the stellar matter in a simple way, we oara-
metrize the relative concentration of electrons in the stellar matter as a function of the Gemsity.
This function should simuiate the delepionization as well as the neutronization of the s<ellar
matter, which are the basic physical ingredients of the supernovae implosion phase. At the same
time our equation of state should represent the increase of adiabatic index near the mmclear
matter density. By keeping this in mind, we write the relative concentration of electron =8 as

1

FQ)= 1 4 e{¢=Ced/Ca’ (3

where,

¢ = logross

1 -
(= E(Cn +<)
Ga=5(6 =0

with { a.nd-C,. as free parameters. We then write the pressure as the sum of the electron pressure
P, and the neutron gas pressure Py, given by

P, = K1 {z(2z® - 3)(2* + 1)"/* + Sin{z + (=* + 1)/2}}, (14

£ .

Py = szwaa (18:
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where K; = 6.002 x 1022(erg/cm®); Ki = 5.454 x 10%(erg - em?[g%1%) ;

(3!’2)1’8
m.c

A(FYop/ma); (18)

and m, is the electron mass, Y, is the initial electron-nucleon ratio, p is the barionic densmity
and m, is the atomic mass unit.

With the above equation of state, the effective adiabatic index (= 8InP[8lnp) can be
calculated as, ‘

y= %-113{[%(1? — 1)+ 18K &%(2® — 1)~ + 5P}, (7;

where P = P, + F,.

Figure 2 shows the behavior of adiabatic index versus logarithm of the density for the three
cases shown in Table 1. As expected, the adiabatic index is a smooth function of the densiiy
which connects the behavior of the adiabatic index of the relativistic degeneraie electron gas (~
= 4/3) to the one of the nonrelativistic degenerate neutron gas (v = 5/3).

Table 1

equation of state  (ufg/em®)  Llg/em®)  Ymin

A 11.0 9.0 1.06
B 11.0 8.5 1.12
c 10.5 2.0 0.92

In order to analyse the dynamical evoluiion of the siellar core according to our equazion
of motion, we first prepare the initial condition corresponding to a pre-supernova core configu-
ration. Let M be the total mass of the core, As mentioned before, we divide the core in twe
parts, with m; = aM and ms = (1 —a}M, and obtain the equilibrium configuration of these
two shells using the equation of state of pure degenerate electron gas [13] corresponding to the
iron core (Y5 = 0.46). We assign this configuration to the pre-supernova core. Then, we switc:
on our equation of state given by Eqs.(14-17), which triggers the collapse since the adiacati
index is lower than 4/3 at the equilibrium density of the pre-supernova core for this equation o
state.

In Fig.3, we show an example of solution of Eq.(9) for M = 1.34Mp snd a = 0.840. witt .
the equation of state (A). In this example, the onter core waa ejected by a strong bounce scocr
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Jeaving an oscillating high density inner core. At the instant of bounce, a large amount of energy
was transferred from the inner core to the outer one, as is shown in Fig.4.

The other interesting example is seen in Fig.5, where the energy transfer was not enough to
eject the outer core, and the system gets into a nonlinearly coupled oscillation. In this example.
all parameters are identical to the first one, except for the value of o which was changed to
0.767.

It is interesting to note that, even for such non-explosive configurations, if the two-eheil
sysiem continues to oscillate, it will fall into an exploding condition after a finite number of
oscillations. This situation becomes more clear if we represent the dynamics of the system by =
trajectory in the two-dimensionel configuration space. Fig.6-a represents the potential surface
( sum of the internal and gravitational energies) as a function of coordinates Ry and R, (see also
Fig.6-b). This surface is characterized by the narrow and deep valley which has the minimom az
the (Ry n, Ra.n) corresponding to the equilibrium neutron star configuration of the total system.
This valley extends to R — 0o keeping Ry almost constant. There are two steep walls, one &2
R, ~ 0 and the other at R; ~ R;. The former corresponds to the high density core and tke
latter to the high density outer shell.

In this figure, we also plotted the trajectory of the system corresponding to the solution
given in Fig.3. The system which started from the pre-supernova configuration enters imto the
displayed region from the right-hand side (point A). The trajectory is pulled into the vailey b¥
the gravitational force and then it hits almost perpendicularly the steep wall at Ry ~ 0 (caze
bounce, point B), being reflected into the direction of Ry ~ R; wall. The second refection a:
the point C in the Ry ~ R3 wall orientates the trajectory just in the direction of the cutgoing
door.

Fig.7-a,b shows the potential surface corresponding to the configuration of the exampie
shown in Fig.5. In this case, it is seen that the potential surface has a narrow and shallow valler
with a very deep pocket at the corner of the two walls. The system finds the outgoing way oniy
after a somewhat long forth-and-back motion inside the valley, sometime going around the edge’
of the pocket. The initial part of the trajectory is shown in Fig.7-a. It may be possible tha:.
such ‘non-first-chance’ explosion be also a physical mechanism for supernova pheﬂome.na.{m, 141
However, our present model is not adequate for guch cases, since no dissipative processes are
taken into account here.

Anyway, it is important to clarify under what conditions a pre-supernova implosion causes
a bounce shock strong enough to lead to the explosion of the outer core at the first chance.
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V. DISCUSSION AND FINAL REMARKS

It is worthwhile to emphasize that the quantitative values of energy transfer calenlazed =
the present model does not necessarily correspond to the final amount of energy or ejectec. mam
of a supernova. Dissipative processes, as well as the the neutrino transport phenomena curine
the shock propagetion may strongly influence the scenario of after-shock dynamics Cm the
other hand, in our Lagrangian formulation the violent energy transfer from the inner to outer
core through a formation of a shock wave is naturally incorporated to the kinematical feasre of
the two colliding shells. Therefore, we expect that our model mey serve to estimate the Ippe
limit for the amount of energy trausferred via bounce shock formation.

In Fig.8 we show the dependence of energy transfer as a funetion of o for pre-supesnove
cores of mass M = 1.18,1.24 and 1.34M; calculated using the equation of state A. It is ter-
esting to observe that in each case, the strongest shock is formed at « = 0.9, namely oniy 10 €
of the core mass is exploded. The amount of energy transferred is of the order of 3 —¢ < 10%
ergs which corresponds to the characteristic energy estimated for a type Il supernova evers 2

The existence of such a maximum of energy transfer as a function of mass Separamion
can be understood qualitatively from the form of the potential suriace (Figs. 6,7). For srzalle
values of o, the valley of the potential as a doorway route of the supernova explosion besome
higher and furnishes lese kinetic energy to the ontgoing outer core. On the other hand. - tke
value of o approaches unity, although the vallley becomes deep and wide, the smallness f the
outer shall mass does not permit to carry a large kinetic energy from the inner core == the
instant of maximun compression of the outer shell.

Similar results are obtained using other equations of state (see Figs.9,10), slthone= the
details vary from one equation of state to another. The largest energy transfer is obiained whe=
a bounce shock is generated at the position which divides the pre-supernova core into two aris
the inner part carrying spproximately 90 % of the core mass. If the bounce shock takes diace -
on other locations, the energy transfer decreases rapidly and the explosion will be unsuccessini.
at least for the first chance. In other words, the success of a supernova explosion as the firs
chance will depend crucially on the mass configuration at the instant of the generation =i tke
bounce shock.

The result of the present calculation suggests that, in order to estimate the global quazzities
of & supernova explosion, it suffices to know what is the proportion of the mass which is conzzinec
inside the radius where the bounce shock is generated.

In the present calculation with only 2 shells of constant mass, we searched for ske mas
geparation ratio which maximizes the energy transfer due to the bounce shock geparasicm. 2
course, a hydrodynamic calculation naturally leads to a mass separation of the explosion. dow-
ever, in order to estimate the amout of the ejected mass and epergy oulpui we expect thes
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the full hydrodynamic calculation might not be necessary. For a given pre-supemova conRgurs-
tion, a relatively accurate estimate for these quantities may be predicted allowing for the mas
transfers between shells and making use of a few more shells. A study on this line is mow

progress.
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Figure Captions

1.
2.
3.

4.

8.

T.

8.

10.

Homogeneus shells for supernova core.
Adiabatic index as a function of matter density for different cases ehown in Table 1.

Shell radii as fanctions of time for the total core mass equal to 1.34My and o = 0.940. The
equation of state A is used.

Total energy of each shell in units of 105! ergs as functions of time for the case shown in
Fig.3. Solid curve is for the innner core and the dashed one is for the outer core. Note »
sudden change in these energies at the instant of the outer core bounce, showing a large
energy transfer from the inner to the ounter shell.

Same as Fig.3, with o = 0.767.

a) Contour map of potential energy in logio 1 — logio R, plane for the case of Fig.3. Radi
are in centimeters. The numbers on the equipotential curves represent the energy in uniis
of 101 ergs. The corresponding trajectory is indicated in this figure (curve A-B-C), witk
arrows indicating the increasing time direction. b) Potential surface view.

a) Contour map of potential energy in logio Ry — logip R, plane for the case of Fig.5. Radi
are in centimeters. The numbers on the equipotential curves represent the energy in units
of 10! ergs. The corresponding trajectory is indicated in this figure. Note the oscilasory
behavior of the trajectory (see text). b) Potential surface view.

Energy transfer in units of 10°! ergs from the inner core to the outer core calculated witk
equation of state A as a function of the masa ratio o for different total core masses. Numbere
attached to each curve represents the total mass in units of solar mass.

Same as Fig.8 for equation of state B.
Same as Fig.8 for equation of state C.
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