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Summary

A model of fireballs radiated in )e"‘c" collisions and radiating in turn other
fireballs (i.e. hadrons) is shown to describe well the large bulk of particle pro-
duction (multiplicities, inclusive distributions, fractions as functions of momenta).
One adjustable parameter is used for each kind of hadron emitted (minus an over-
all constraint). When considered as a process in the mean, the scheme is shown
to be equivalent to a sequential decay where the only assumption made is that
at each step a particle is emitted with an energy proportional to that of the de-
caying parent and the proportionality factor turns out to be, numerically, nothing
but the running coupling constant of QCD. The consequences of this scheme are

investigated.

Key-words: Hadron production by electron-positron collisions;
Fireball radiation model; Tetal and inclusiwe cross sections;
Multiplicities.
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1. Introduction.

The problem of multiple hadronic production has been approached by means
of several kinds (*~5) of models since the early days of the discovery of strongly
interacting particles. Perhaps the most ambitious program has been the one de-
veloped by Hagedorn (¥} assuming that in a high energy collision the production
of hadrons occurs through the formation of highly excited matter, a fireball that
starts emitting fireballs that keep emitting more fireballs and so on until all the
energy has been released. It was not immediate to realize that these fireballs (also
called clusters(") are nothing but the hadrons themselves and, in fact, an even

more stringent local hadron-parton duality has been advocated in recent times (%),

While actually closer to Heisenberg’s works (our model is not a statistical one
as we assume a radiation law), in spirit our approach is very similar to Hagedorn’s
in that we arrive at a sort of hadron-fireball duality. We begin by developing a
model for e* e~ to hadrons which starts from the moment when a system of a highly
excited quark-antiquark pair has been created through a highly virtual photon and
the resulting fireball begins its decay process. This is to say that here we will not
be concerned with jets and the large pr physics for which the appropriate language
is presumed be that of perturbative QCD. Similarly in this paper we are not going
to make any dynamical consideration concerning the production of the ¢§ pair, of
the resulting angular distribution around the beam axis and of the p, distribution

around the jet axis.

These topics will be the subject of a forthcoming publication(*), In the present
paper we are going o concentrate on the bulk of ete™ yields: inclusive distribu-
tions, multiplicities, etc. It is quite extraordinary that over 95% of these data
turn out to be in excellent agreement with the predictions from the scheme out-
lined above: a fireball is created that keeps decaying into fireballs which in turn
decay into fireballs etc. under the following simplifying assumptions: i} a two step
process occurs (as we will see, higher iterations would be needed if we were to
account for the finer details) and ii) the energy distribution is assumed to be due
to a simple radiation mechanism at each step. A grand total of three adjustable
parameters is used: one for each kind of hadrons considered (pions, kaons and
nucleons if we ignore smaller contributions) minus an overall constraint due to

energy conservation,

It is quite amusing that if one assumes the iteration procedure to continue



CBPF-NF-026/89

indefinitely (fireballs creating fireballs creating fireballs ...) and if one takes a
slightly modified radiation energy distribution {(ox [E€n'/2E]~! instead of E~')
one arrives for the multiplicity of particles produced to the same functional energy
dependence that one encounters in QCD, namely explen/s/A]'/? where ¢ is a
constant. We do not believe that any special significance should be attached to
this particular point but it certainly opens remarkable possibilities.

The model is discussed in detail in Sec. 2 whereas the comparison with the
data for the multiplicities of the various kinds of hadrons is given in Sec. 3. Here
the three adjustable parameters are fixed and all that follows is parameter-free.

Sec. 4 is devoted to compare the model with the inclusive yields for producing
the various hadrons. It should be stressed that one of the reasons for the agree-
ment we find with the data lies also in our careful taking into account threshold
effects. The problem of the fraction of particles of various momenta and energies
is considered in Sec. 5. Up to energy thresholds,our model predicts a constant
energy fraction for the various kinds of hadrons and the momenta fractions are in
reasonably good agreement with the data.

In the second part of the paper we explore the consequances of taking a differ-
ent viewpoint whereby the production occurs in a statistical way:a mean number
of fireballs is produced and so on. First, we show that nothing much changes as far
as averaged multiplicities are concerned. Next, we show the effective equivalence
of this scheme in the mean to that of adopting an apparently completely different
approach, namely that particle production occurs through sequential emissions.
At each step of this sequential decay the only assumption we make is the most
economical one: the energy of the particle (fireball) emitted is simply proportional
to that of the parent fireball. No energy distribution law is postulated here. In
Sec. 6 the equivalence of these schemes is discussed and it is seen to imply as
a numerical consequence that the proportionality factor of the sequential decay
scheme is,perhaps not unexpectedly, nothing but the running coupling constant of
strong interactions. Some conclusions are given in Sec. 7.

It is quite obvious that the present attempt lacks the sophistication of all the
QCD armory for which we refer the interested reader to the specialized literature
(10011} Also, several distributions (12)33) are known that fit multiplicities very
well. It is, however, to be said that our approach provides a quite satisfactory
account of the large bulk of ete™ yields with oversimplified means and, most

of all, that it allows one to understand these yields in a simple and physically
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intuitive language while showing appealing connections among different production
mechanisms.

A final comment is in order: for the model we are using here, the case of
ete~ — hadrons is the ideal reaction to look at. An extension to the case of
hadronic initiated multiple production will be the subject of future work but this
is a much more complex problem. While, in fact, it is most natural to assume
that elementary particles (such as e¥e™) when colliding in their ¢.m., coalesce
into a unique fireball that then decays into two back to back fireballs which keep
decaying, the same kind of argument does not apply so directly to the collisions of
hadrons, The latter, in fact, being composite systems, one must first disentangle
the formation and decay of fireballs resulting from the collision of two elementary
constituents (quarks) from the big mess of what all the other constituents do. As
nearly fifty years of models of strong interactions have taught us, this is not a
simple task and this is also the primary reason why non-perturbative QCD has
been so far so untractable.

2. Description of the model

Qur starting assumption is that a collision ete™ occurs via the exchange of
a virtual photon of mass /s which manifests itself as a fireball of hot hadronic
matter which decays radiating fireballs of lower energy. The energy distribution
of these fireballs is simply assumed to be the usual radiation law 1/F so that the
number of fireballs of energies between E and E + dE is (the suffix “c” being for
“cluster”)

dne = 3.5 (1)

where we assume g, to be a constant (to be determined). This is exactly Heisen-
berg’s starting point (3.

The total number of clusters that can be emitted is then

ve [
Ls) = n(wd) = 3. | % = gln (mi') (2.2)

where we are implicitly assuming already (through the lower limit of integration)
that firebails are nothing but hadrons.
For the time being, we will assume L(s) to be an integer but this will soon

become irrelevant.
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The number of fireballs with energy between E and /s will be

ne(EV5) =. [ v 2 tn (?) (2.3)

Thus, the energy of the £ — th cluster is, from the preceeding equation

E, = \/;e—ﬂc(Et)er — ‘/;e—USo: (2.4)

Let us now demand that the total energy carried away by the nc(.\/;) clusters
be exactly /s i.e. that energy is conserved throughout the first chain of decays.

From (2.4) we must have

1 - e"L/le

-1/g.
Tt /9 (2.5)

L
V=) E =+/s

which, assuming L to be large enough, implies

el =2 = g =144 (2.6)

Notice that, not surprisingly, from (2.4,2.6) the energy of the first cluster is
nothing but 1/3/2. This is in keeping with the physical picture that the first step -
of the process is represenied by two back to back partons each of which carries an
energy 1/3/2. In this sense, the fireball-hadron duality is nothing but the hadron-
parton duality already mentioned(®.

If the above process is repeated, we will have a second generation of cluster
formation and then possibly a third one and so on.

In general, after k—steps, the total amount of clusters which will have been
formed by an initial energy E will be given by

E E, Ex-1
n(I(E) = ] f.(Ey)dE, f f(E2)dE; --- f f(EJE.  (27)

My My My

where we have written f.(E) for our basic radiation distribution

fdE) =g 5 (28)

Let us defer for a moment the consideration of what might happen if the above

process is repeated indefinitely and let us now suppose that the second generation
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of fireballs are already the final hadrons. Assuming the same energy distribution
law, the number of hadrons of type h whose energy is between E and E + dF
emitted by the £ — th cluster will be

dE
dnl(E) = 90— 9(E¢ - E) (2.9)

where g is a constant (to be adjusted) that discriminates among the various kinds
of hadrons (x, K, N,...).

In the following we will consider x, K and N for a total of 3 adjustable pa-
rameters.

As we will see in what follows, the data will be perfectly reproduced by stop-
ping at just this point of the decay chain of fireballs and we can therefore consider
at this point what gives us the constraint of energy conservation.

For this, we write the total mean number of all kinds of hadrons emitted by
the £—cluster with energy E;. From (2.9) we find

NOE)=GCGtn (%) 8(E, — E;) (2.10)
where we have defined
H
G = Z ah (2.11)
A=1

if H is the total number of kinds of hadrons we are going to consider.

Summing over the energies of all hadrons produced, assuming the total mean
number of the latter to be >> 1 and demanding that the result coincides with the
energy E; of the parent fireball, we get, in analogy with (2.6)

H
Y gn=g.=144. (2.12)
A=1

Remark that in the sum (2.12) both charged and neutral hadrons are to be
taken into account.

We end this section by returning to the general formula (2.7). First of all, it
is quite obvious (and will be discussed in Sec. 3) that at the second iteration the
total multiplicity will be of a £n? type if the form (2.8) is used; this, as it is well

known, is a classical form assumed for hadron multiplicities.
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One may, however, ask oneself what other more general forms would be al-
lowed should one iterate an indefinite number of times the scheme of fireball decay
and, also, should one allow for slight modifications of the radiation energy distri-
bution law (2.8).

To look into this, remember first that eq. (2.7) can be recast in the form

n{(E) = [ / C () dE,] (2.13)

Next, let us assume that we modify as little as possible the radiation law (2.8),

1.e. we take

F(E) = 8 (ln(g/m,))p (2.14)
so that (for 8 > —1) |
gy Lys [EEP]"
n{)(E) = e (2.15)

The decay constant g. will, of course, depend on the specific choice of 8.
H we now allow for the iteration procedure to go to infinity, the sum of all

particles produced will give a multiplicity

Eﬂ] (2.16)

N Ezm exp [ ¢ ﬁ +1

where we have ignored all thresholds since we have taken £ — oo.
Eq. (2.16) is most interesting indeed. If 3 = 0 (pure radiation law) one

finds that the infinitely recursive fireball scheme gives a power growth for the

multiplicity. If, on the other hand we take # = —} (implying a somewhat harder

energy distribution) we recover the growth suggested by QCD(” i.e.

N = exp (czn% (%) ) . | (2.17)

where we have assumed A, = m, as suggested by deep inelastic data.

It is, of course, quite possible that this result is totally accidental and we are
not going to attach too much significance to it; nevertheless it is quite intriguing
that the QCD energy dependence for the mean multiplicities should be obtained
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in the infinitely recursive scheme of fireball decay with the pure radiative decay

law hardened by a (lnE)-% factor.

3. Fit to the multiplicities.

If we go back to eq. (2.9), the total number of hadrons of type A emitted by
the £ — th cluster will be

B 4E E
nit)(Eg) = gh/ -E— = Gk in (m‘) G(Eg - m,.)

ma

=gnln (‘/;:n;:h) O(Vse e —my) = (3.1)
= gn In (‘/_2'"‘) 8(+/327™ — my)

where the last line follows from eq. (2.6).
The total number of particles of type h emitted by all the fireballs obtains
from (3.1) by summing it over £ from 1 to L(s)}(= n.(s)).

We find
L(s) L(s)
Np(s) = ): nOE)=a ) (zni-; - g—) 0(E¢ - ma)
t=1 (3.2)

;guyc l"(m,.)[‘ ( ) ]a(fe < —my)

where use has been made of eq. (2.3) and where £_ is the smallest cluster whose
mass is larger than that of the hadron under consideration.
Notice that from this point on we can completely forget the initial requirement
that L(s) should be an integer. All we have to do is use eq. (3.2) in its last form.
Notice also that eq. (3.2) is exactly in the form of the 0(¢n?,/s) dependence
which is usually taken to fit the data. Eq. (3.2) represents only the multiplicity of
hadrons of type k. The total multiplicity will be given by

H
N =3 Mals) (33)
A=1

if we allow for a total of H types of hadrons of all possible kinds (charged and
neutral).
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The comparison with the charged multiplicity data®*®) for n¥, K, p extrap-
olated up to /s = 100 GeV is shown in Fig. 1 where we have taken

gx+ = 0.18 (3.4)

{g,t ~ 0.6
gp ~ 0.11

From now on there are no more adjustable parameters.

Notice that a blind counting of the contribution of neutral particles (1/3 of
all pions are 7%, i.e. g_, =~ 0.3, 1/2 of kaons are K°, K, i.e. g , = 0.18 and
1/2 of the nucleons are neutrons, i.e. g, = 0.11) would lead to

H
Z gn ~1.48 (3.5)
h=1

i.e. pions, kaons, and nucleons alone seem to saturate the energy conservation
constrain (2.12). Some care has, however, to be paid to the fact that a fraction of
about 10% of the charged pions comes from K decay (mostly)(**), and a fraction
of ~ 25% of the protons comes from A decay({!%); one then arrives at an estimate
of 37 g, = 1.33 counting pions, kaons and nucleons so that some room is left to
produce all the remaining particles.

The total charged multiplicity, obtained summing the pionic, kaonic and
nucleonic contributions i.e. using egs. (3.2, 3.4) is compared with the data in Fig. 2
and extrapolated to the TeV region. In this figure, the SPS Collider data('®) have
been added with the simple minded recipe{*”) of halving the pp energy in order to
compare with ete™.

Fig. 3 shows how also the few data on A production (!*) are well reproduced
by the model. A value g, 22 0.055 is used in Fig. 3.

Notice, once again, how important thresholds eflects are to get good agree-

ment with the data at not too high energies.

4. Inclusive distributions and scale breaking

The well known energy momentum conservation of inclusive reaction(!?) tells
us that the differential number of particles produced with energy between F and
E + dE is proportional to the inclusive yield 1 do/dz where z = 2E//s.

From eq. (2.9) summing over the contribution of all clusters whose energy

exceeds F (eq.(2.3})), we find
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ANy (E) = gega tn (-—-‘gj) % (4.1)

Notice that, according to eq. (4.1), the inclusive distributions 1 do/dE to
produce the various hadrons would be all proportional. Some mass effects are

introduced in the quantity for which the data are given{(??)

1 do
Bodz

The comparison for the various hadrons is shown in Fig. 4-6. The agreement,
as one can see is excellent for K* and p yields and is still very good for #* for which
the tail of the distribution only (few percent of the yields) is not well reproduced.

Several comments can be made. First of all, no fragmentation function has
been used here. Second, the deviation of our curves from the data can simply
be understood as an energy scale breaking effect. As it can be seen, in fact, the
data show an excellent scaling behaviour in the beam energy /s up to values of
z, typically, around ~ 0.3. After this value, this kind of scaling appears to break
down and the lowest energy data are seen to accompany better our curve.

The reason for this can easily be understood as a consequence of scale break-
ing. To see this, we begin by evaluating up to what z:"" our curve for the inclusive
cross section can be trusted for each hadron. For this, we write the mean energy
of the hadron of type h emitted by the £ — th cluster as

E dﬂ' Eg
(E(t)) o d, g}. f dEe(Eg - E)

' f o de 94 fm‘ dEa(Ez )

where E; is the energy of the £ — th cluster (2.4). Performing the integrations we

&

(4.2)

get

E - mp

o (%)

Therefore, given that the most energetic hadron (in the mean) must come

(B = (4.3)

from the most energetic cluster, using eq. (2.4) with £ = 1, we get

Y _m,

(E (-‘-)) _
n(V/s/(2mn))

(4.4)




CBPF-NF-026/89

i.e., from the definition z = 2E/\/s, we find

1

<z.’:..x>=i‘(lm) (= 22). (45)

Eq. (4.5) gives, for each kind of hadron A, the maximum mean value of z* in
our model i.e. the maximum value for which we can trust our results. For larger
z-values we would need to take fluctuations into account. It iz quite recomforting
that these fluctuations affect our conclusions only to a few percent.

Notice that the value of z* _ recedes to lower and lower values (logarithmi-
cally) as the energy increases and this effect is less and less marked the heav-
ier the particle. Thus, the deviations of our curves from the data occur around
z,,, ~ 0.33 for /s = 34GeV and z_,, =~ 0.43 for /s = 14GeV for the proton but
already around z_,, = 0.21 for /s = 34GeV and z_,, = 0.25 for /s = 14GeV
for the pion.

The situation is summarized in Table I whereas in Figures 4-6 we have shown

with arrows the various values of z:““ for the different kinds of hadron.

TABLE 1
V3(GeV) 5.2 14 22 34 55
2" 0.32 0.25 0.23 0.21 0.19
z* 0.49 0.35 0.31 0.28 0.25
z? 0.63 0.43 0.37 0.33 0.29

The last comment one can make is that any hardening of the simple minded
1/E distribution energy would improve the agreement. This would be the case
should one use the distribution (Efn} E)~! that in an infinitely recursive scheme
has been shown to give us the QCD multiplicity law (2.17).
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As already stressed, however, the point is that only few percent of the data
are not well reproduced in Fig.4 and thisis entirely acceptable given the simplicity

of our approach.

5. Fraction of particles

The fraction of the various hadrons with energies between E and E + dF i.e.

dNy(E)
24 AN(E)
is obtained directly by the use of eq.(4.1) i.e. it is a pure constant (up to threshold
effects)

n(E) = (5.1)

fu(B) = 2. (5.2)

PO/

The data, however, are usully given as a function of the momentum rather
than of the energy. Performing the appropriate transformation we find

oy [zn (\/.?/(1;,2 +mi)t)]
Th gty [tn (va/6? +m)t)]

The agreement of (5.3) with the data('® is good for pions,kaons and protons
(Fig.8) up to the various values of p_,, .We note that our p,  follow the vari-
ation of the point at which,for the various hadrons,our model deviates from the

fu(p) = (5.3)

data at each c.m. energy.Of course,to the extent that we are discussing ratios,the
deviations from the data occur at the earliest point i.e. for the pion.

It should anyway be recalled that our model is not expected to hold at large
z values. Furthermore,we have not introduced any fragmentation function which
could have been chosen in such a way as to improve the agreement with the large

z data.

6. Properties in the mean and sequential decay.

6.1 Independent cluster radiation.

In this second part of the paper, we begin, first of all, by considering what the
previous model might imply if taken in the mean. More specifically, suppose that
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the decay process is seen as the emission of a mean number of clusters n.(+/s).
Under the same previous radiations law (2.1) for the energy distribution, we find

n&@zhh(g) (6.1)

where k. is a constant (which may or may not coincide with the one, g., we
introduced in Sec.2 )Jand m is the mass of the lightest hadron,i.e. the pion.

The mean energy cluster will be

(Ec) = \/;/nc(\/;)' (6°2)

Each cluster will emit a mean number of particles (again we take the radiation

law) given by

ny(E;) = kpln (;n%‘/;)) - (6.3)
with k, some proportionality factor (possibly not the same as g, introduced ear-
ler).

The main assumption is now that the production and the decay of fireballs
are two totally independent phenomena. In this case, the total multiplicity will be

m

a(va) =k tn (L) [tn (L2) - enthtntvi/m) (6.4)

where

k= kck, (6.5)

Notice how exiremely close is the law one arrives at in this way of reasoning
with our previous law for the total multiplicity (3.2) which we obtained by keeping
the energy correlation constraint i.e. demanding that the total energy carried by
all the clusters be just /s (in the present case this is automatically guaranteed
by eq.(2.6) which is why k. may or may not coincide with g.). The closeness of
(6.4) to (3.2) tells us that the total charged multiplicity must be well reproduced
by (6.4). This is indeed the case and the result is undistinguishable from Fig.2 if
we take

ko ke~1 (6.6)
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6.2 Sequential decay.

Next, we consider the following simple picture: the decay occurs by emit-
ting a hadron at the time under the assumption that the hadron’s energy is just

proportional to that of the parent fireball, i.e.

E] =a\/§
E; = of\/s — Ey) = ay/s(1 — a)

Eu = a/s(1 - a)*"! o0

The chain goes on until the last fireball has not enough energy to still emit
another hadron, i.e. E, >~ m.

One could discuss this decay chain at the light of the QCD angle ordering(®
but this is quite irrelevant for our purposes.

Notice that, contrary to what we have done so far, no specific energy distri-
bution such as energy radiation is taken here.

If we iterate eq.(6.7) up to exhausting all available energy, we find for the

total number of particles

_ An(a/s/m)
N = /(1 —a)) + 1. (6.8)

That the average charged particle multiplicity as a function of the ¢.m. energy

is well reproduced by (6.8) needs not being further considered after we have already
said that this is the case for (6.4) given the equivalence of these two laws.

So far we have said nothing about a. Certainly it must be « < 1 not to
violate energy conservation and the most natural thing is that a should be just
the running coupling constant of QCD. As we will see, this conjecture follows
under the requirement that the present scheme gives the same multiplicity law
(6.4) that we have derived previously.

If a €1, eq.(6.8) gives

N = a in(ays/m) +1 (6.9)

What is most remarkable about (6.9) is that it follows without making any
special requirement about the energy distribution.

Assuming now eqs.(6.9) and (6.4) to match, we find (up to an extra term 1
in (6.9))
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1 1 1
o= nc(s) o~ Z'c' m (6.10)

where we have taken k. ~ 1 {o fit the data.

Recalling the form of the running coupling constant «,

2 1
11 — 2n; Ln(y/s/A)

we see that the various parameters match if we take the number of flavors ny = 6

(611)

o,

and A >~ m, 2~ 0.14GeV {as suggested by deep inelastic data}. Notice, in passing,
that had we insisted in keeping k. ~ g. =~ 1.44 , ny = 3 would have given a closer
numerical agreement.

We are thus led to the following chain of rather intriguing considerations:
i) the sequential decay chain fits very well the total multiplicity in ete™ without
any specific choice of energy distribution, provided the running coupling constant
a, is used for o;
ii)from the equivalence between the above scheme and that of cluster production
in which a radiation-law form was used, the latter receives an indirect support by
the above point i);

ili} the mean number of cluster produced n.(s) is related to a, by

n{s) ~ al; (6.12)

x

iv) the mean energy of the cluster produced (6.2} can now be rewritten as

(Ee) = a,/s (6.13)

or it coincides with the energy released at the first step of the sequential decay

chain i.e. with the hadron’s energy

Ey = a,V3; (6.14)

v) the above finding is perfectly in keeping with the duality scheme whereby fire-
balls are hadrons(%).



CBPF-NF-026/89
~15-

7. Conclusions.

We have discussed a series of related arguments that can all be viewed in a
general scheme of fireballs formation and decay to account for the production of
hadrons in ete™.

In the first part {Secs.2-5) we have discussed a model that describes well

the large bulk of ete™ yields and does so in an extremely simple and physically
intuitive way.
Although a specific radiation law of energy distribution is assumed here like in
Heisenberg (ref.2) and the model is not a statistical one, in its spirit the model is
reminiscent of the original work of Hagedorn on fireballs (where fireballs turned
out to be nothing but hadrons) but some of our results are rather in support of
an extended fireball - parton - hadron duality closer perhaps to some more recent
approach(®), The novelty here, which really dates back to the early days of multiple
production (see ref.2 for a complete discussion) was to assume a radiation-type
energy distribution for the hadrons emitted.

In the second part of the paper (Sec. ), we view our approach in the mean and
we develop a sequential decay scheme which displays intriguing features leading
to rather interesting considerations .

Throughout the whole paper we have not used a QCD language (we have not
even put color in the game) but, amusingly enough, we have found some analogies
and points of contact on which we have elaborated rather at length. The model
is not intended to compete in data fitting and in numerical analyses with the
highly sophisticated models (Lund, Webber, QCD cluster etc) which are available
on the market. Qur intention is not an accurate reproduction of the data in the
fine details for which extremely powerful techniques have been developed(!!?2).
QOur aim was to provide a physical insight by which the large bulk of data could
be accounted for in a simple way. As we have shown, our model does so with
practically one adjustable parameter for each kind of hadron considered (we have
limited ourselves to three: pions, kaons and nucleons). For the more dynamical
aspects of ete~ — hadrons, such as angular distributions, p, distribution around
the jet axis and so on we refer the reader to a forthcoming paper(®) where some of
the results developed here will be used in a hadronization scheme which has been
elaborated recently (31).

An extension of the present model to hadronic initiated reactions will be the
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subject of future work.
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Figure Captions.

Fig. 1:Pion,kaon and proton multiplicities as functions of W = /s,

Fig. 2:Total multiplicity as function of W == ,/s,a)in electron-positron colli-
sions,b)up to the Tevatron energies.

Fig. 3:Lambda and kaon multiplicities as functions of W = /s.

Fig. 4:Pion differential multiplicity,i.e. inclusive distribution, as a function of
Feynman x (W = /3).

Fig. 5:5ame as Fig. 4 for protons.

Fig. 6:Same as Fig. 4 for kaons. -

Fig. 7:Same as Fig. 4 for lambdas.

Fig. 8:Charged hadron fractions as functions of momenta.
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