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ABSTRACT

We characterize Cellular Automata (CA} within a general background of
dynamical systems. We then 1illustrate CA by presenting wvarious relevant
properties of a stochastic one, namely an extended verslon of the
Domany-Kinzel CA. We flinally propose a quite general classification of the
varicus types of sensitivity to initial conditions that dynamical systems
might exhibit; this classification recovers, as papticular cases, standard

discussions related to the Hamming distance and the Lyapunov exponent.

Key-words: Cellular Automata; Dynamical Systems; Spread of Damage;

Domany-Kinzel Cellular Automaton.
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1 INTRODUCTION

Phencmena in Nature occur somewhere and at a given time. Consequently,
the Theoretical Physics basic mathematical object for étudying dynamical
systems is a "field" ¢(x,t) defined in a apace-time (x,t). The fleld can be
continuaua (¢ € R;. vhere n 1s the {lield dimension) or discnete (¢ € N or,
equivalently, ¢ is lsomorphic to N or to a part of N); the space can be
candinuaus (x € IRd, where d is the oapace dimenslon) or diacrete {x € N);
finally, the time can be cantinuaus (t € R) or diachete (t e N). As a
whole, we have 23 different cases, which are illustrated in Table I. It is
worthy to emphasize the fact that the (discrete flield) - (discrete space) -
(discrete time) case is the only one which 1s strictly tractable in a real
computer. Cellular automata (CA) belong to this category. Furthermore, the
denomination CA is normally reserved to those dynamical systems which present
a time-layened architecture in the sense that we can simullaneously update
all the elements of the system (thus being susceptible of poanallel processing
in computers). A- very general definition for CA is outlined in what
follows,

Consider a denumenable set of positions {xl} (1 =1,2,...,N}; they could
be the sites of a Bravais lattice (e.g., a linear chaiq] or an hierarchical
lattice (e.g., a Slerpinski gasket) or any other spatial array. With each
position we associate a variable ¢1 which can take q, different values (i.e.,

¢1 = 1,2....,qi), the most frequent case being q =4q. ¥i, and typically

g =2. At time t = 0 we must provide the set {¢:°)}; the set {4.:11} at time

t =1 1ls either directly given as part of the Initial conditlons, or is
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determined by giving the set of (deterministic or stochastic) rules {p:”},

i i i

given through the set ({f#w)}.{é(”},...,{tﬁ(ﬂ}] = {¢(M)}, the most frequent

i i 1 i

l.e., ¢(“ =p(")[{¢(°)}]. Generally speaking, the initial conditions are

case being T = 0. The set of rules {p:t,} at time t might themselves evolve,

and can in general be expressed as follows:

¢:1+11 - p:nn[{‘:o-n}}]_

¢(t+2l _ p(-n-zl [{¢(M+1)}] )

i 1 1

LE N ]

i 1 i

o = p(tl[{¢(0-)t-l)}] Cmrs1,ts2,...)

The most frequent case is
o) < p[{¢(tt-!-1i-§(t-ll}] VUL,

Moreover, the most commonly used rules are the homogeneous facal ones, 1n

)

which ¢:t is determined, assuming that v = 0, by the values {f;:t-”} where i

runs over A neighbors of site i (including the site i itself). For such CA,
the rules are established by giving, for detenminiotic CA, a correspondence of
A

q:,l states into q states (qq possibilities), or, mcre generally for stachaatic

(also referred to as pnobabilistic on nandam) CA, by giving the probablility
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set

(P(o.8, .. 8,71),P(9,.8,,....8,72),...,P($,,8,,...,9,/q} satisfying

‘Zi p(¢1'¢2’...’¢2\./¢) =1 (2)

with ¢j =1,2,...,q9 (j=1,2,...,A), where p(¢1,¢2....,¢u/¢) is the

probabllity of having, at a given site, state ¢ at time t 1f the states, at

time (t-1), of its A neighbors are (¢1’¢z”"'¢a)' This type of model is

characterized by giving {q-—l)q’t independent probabilities, say
{p{¢1.¢2,...,¢h/1),...,p[¢1.¢2,...,¢h/(q-1)} for each one of the q:'t states of
{¢1’¢2""’¢a)' Its physlical space 1is, consequently, a hyperpolyhedron in

x
(q-l]ql dimensions which recovers, at each one of its g corners,

deterministic CA. The extended Domany-Klnzel CA discussed in Section 2 1s an
example of the A = g = 2 clags and, as we shall see, it is characterized by
giving, for instance, p(00/1), p(01/1), p(10/1) and p(11/1); it recovers, as
particular cases, 16 deterministic CA.

What are the most relevant propertles that can be studled for a
particular CA? First of all the attractors (t 5 «) at the thermodynamic limit
{N » w): they can present spatial and/or temporal modul&tions of various kinds
as well as spatlal and/or temporal chaos. Also, the influence of the initial
conditions on the attractors often 1s interesting. Order parameters
characterizing the various possible attractors ("phases") can be studied as

well, thus enabling the establishment of the CA phase diagram with all sorts
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of critical phencmena, critical exponents and universality classes . Varlous
types of susceptibilities and relaxation times can also be studied. Finally,
the spread of damage (sensitivity to initial conditions) often exhibits
interesting peculiarities.

The study of CA is a very Iinteresting one. On one hand they provide
s;mple models for a great variety of systems, including chemical reactions,
crystal growth models,. artificial Intelligence, turbulence, computers,
cybernetics, biological systems, varlous other non-linear processes far from
equilibrium, phase transitions (see, for instance, Refs. [1] for reviews, [2]
for chemical reactions, [3] for the Q2R CA, [4] for spin glasses and [5] for
various other spin systems). On the other hand, CA act as prototypes for a
"finite difference equations" Physics In opposition to the traditional
"differential equations”" Physlcs. Indeed, if the deep nature of space-time
turns out to be discrete (which we believe to be the case, essentlaly due to
quantum-like fluctuations effects), differential equations such as those of
Maxwell, Schroedinger, Einstelin, etc. will necessarily become limiting cases
of finlte difference equations to be found.

In the next Section we present results of a phase diagram st,ud)r[61 of an

extended version of the Domany-Kinzel CAIT{

2 EXTENDED DOMANY-KINZEL CA

We consider a one-dimensional chaln of N lattlce sites (1 = 1,2,...,N}

with periodic boundary conditions. Each site has two possible states
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¢l =o = 0,1 {(hence q =2). The state of the system at

time t is given by the set {o':”}. At the next time step,'

{t+1)

the state n:rl of a glven site equals 0 or 1 according
to the conditional probabilities {p[d‘:t_':.o':t}/w:tﬂl]}’ namely
p(00/1) = 1 - p(00/0), p(01/71) = 1 - p{01/0), p(10/1) = 1 - p(10/0) and
p(11/1) = 1 - p(11/0} (hence A =2). This CA 1s closely related to

] 8]

directed percolatioan as well as to directed compact percolationt It is
possible to define at least twoc relevant time-dependent order-like parameters,
namely M = (fraction of sites with value 1) and ¥ = Hamming distance (i.e.,
fraction of sites which exhiblit different values on two replicas_of the
system while using the same sequence of random numbers). The equllibrium
values (i.e., in the toow limit) of M and W in the
(p(cos1), p{01r1), p(10/1), p(11/1)) space enable the characterization of the
"phase diagram" of the system. No analytical results are available, excepting
for the (p{00/1), p(11/1)) = (0,1} critical 1line which, due to duality

arguments, is given byls'gl

p(oml} pl10/1) =1 (3)

In the present study, a Monte Carloe technique has been used by always
starting, at t = 0, with half of the sites with value 1, randomly chosen.
After arrival to equiblibrium (where M is conveniently determined), a damage
is produced and the two replicas (damaged and undamaged) are followed 1n

time until stationnarity 1is achieved (and ¥ is then determined). Let us
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first present the p(00/1) = 0 (legal rules) phase diagram: see Fig. 1 (from
[6]), where three phases are present, namely the {nogen, actinve and chaatic
ones. M equals unity on half of the p(11/1) = 1 square (in particular at the
p(01/1) = p(10/1) = p(11/1) = 1 corner) and vanishes on the frozen-active
critical surface; ¢ equals 1/2 at the (p(01/1), p(10/1), (11/1)) = (1,1,0)
corner and vanishes on the active-chaotic critical surface.

If we now consider p[OO/i) # 0, the frozen-active critical surface
disappears (since p(00/1) acts, on M, as an external conjugated field) but the
active-chaotic one remains: see Flg. 2 (from (10]).

The results we have presented up to now have been obtained by using
independent random numbers for updating each one of the N sites at time t.
Let us now generalize this in the sense that the same random number will be
used to update n {1 = n = N) neighboring sites (the same set of groups of n
sites each for all times). The n = 1 model recovers the previous one; the
n = N model is an extreme case for which a single random number is used for
updating the entire generation. The n-evolution of the phase dlagram is
indicated in Fig. 3 (from [10]). In the n =N 5 «» limit, the p(00/1) =0
phase dlagram exhibits a frozen phase almost everywhere since the
frozen-active and the active-chaotic critical surfaces have collapsed onto the
p(11/1) = 1 plane and/or onto the p(01/1) =1 and the p(10/1) = 1 planes.
This fact cannot be considered as surprising since, in the n =N > « limit,
the system becomes one-dimensional-like in space-time (whereas it is
two-dimensional for finite n and N » w). It is worth stressing that, for the
(p(00/1) = 0, p{01/1) = p(10/1)) phase diagram (Fig. 3(a)), the frozen area

Ar tends to unity whereas the active area Aal as well as the chaotic area Ac



CBPF-NF-025/92

tend to zero when n increases from 1 to infinlty; in addition to that; it can
be shown that the ratio Aa/Ac decreases with Iincreasing n. Hence, tendency
towards a "totalitarian" limit (same random number for all the elements of a
given generation) decreases chaos, but decreases even more.(certain type of)

activity!
3 SPREAD OF DAMAGE: A NEW CLASSIFICATION

There are dynamical systems {deterministiec or stochastic) which can be
very sensitive to small numerical departures of the quantities involved in the
determination of the actual trajectory. These quantities include the initial
conditions, the roundings of the real numbers (say 6,8,16 algarisms) at every
calculational step, the particular sequence of random numbers that might be
used, the parameters which are fixed along the evclution, etc. Whenever a
system is sensitive to the initial conditions, it is necessarily sensitive to
the numerical roundings adopted for calculating its state at a given time
from the previous time(s) by using {(among other possible ingredients)
a finite-difference or differential equatlion: this is the globally so called
aenoitinity ta initial condltiona, and constitutes one of the two essential
properties that qualify the use of the word "chaos" (the other property being
the existence of a large attractor). This sensitivity is checked on an actual
system by introducing a "damage" in 1t and following its spreading. It is now

kl:,“:"m_l[i.il

that the spread of damage in varlous spin systems has a deep
relation with thermodynamical propertles, For these systems, the quantity

whose time evolution is followed (in order to characterize the damage)
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typically is the Hamming distance (¢ introduced in Section 2). By comparing
the initiaf Hamming distance between two replicas A and B of the system and
the final (after a long time) Hamining distance, Herrmann presented“z] various
typical situations to which he referred to as Bhaatic I (é.g., in Barber and
Derrida 1988 in [S]}, ®haatic II (e.g., in Derrida and Weisbuch 1987 in [3]),
¥raogen 1 and Frogen II (e.g., in Boissin and Herrmann 1991 in [5]). By
following, in thls Section, along this line we define a generalized Hamming
distance in order to cover both discrete and continuous systems (unifylng, in
particular, the Hamming distance and the Lyapunov exponent), and then propose
a quite general classification (based on the sensitivity to 1initial
conditions)} of dynamical systems.

Consider a dlscrete or continuous "field" ¢1(t) defined on a discrete
space (1 =1,2,...,N) and a discrete or continuous time t (everything that
follows can be trivlally adapted to a continuous space, but we speak here of a
discrete space in order to be adapted to the most frequent systems on which
spread of damage is studied). We construct, at t = tm (typically tn >> 1 and
corresponds to the time necessary for the system to practically arrlve to its
attractor or equilibrium), two replicas A and B of the system (typically, one
or both of the replicas are damaged versions of the original system at time

tm]. And we define the following normalized genenaliged Hamming distance:

N
<« ¥ g D - dla s>
1=1

N
sup ] 19} - 4}1]
=1

>
time initial
saquances configurations ( 4)

D(t) =
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<...>u refers to conly one trajectory if the system Is deterministiec,
seagoncas

and refers to an average using a sufficliently large set of randem number

sequences (the oame for both replicas) if the system 1is stochastic;

'>hu}ial refers to an average using a sufficiently large set of

cont'igurations

initial configurations (at t = 0) satisfying the external parameters that are
fixed; sup refers to the maximal wvalue 1its argument can achieve at any
conditions (sup (...) = N for binary variables taking wvalues 0 or 1,
or £ 1/2: D = y for the case discussed in Section 2), hence D(t) ¢ [0,1]. Ve
have defined "distance” in the traditional way, i.e., by using the modulus,
but, clearly, other definitions (e.g., |. |k wlth k > 0) could be as well
used; if ¢l(t] is a cyclic or angular-like variable, the amallest angle can be

conveniently used. It follows, from definition (4), that
D(0) = 0+ D(t) =0, vt 2 0 (5)
We assume the quite frequent case satisfying:

(1) D(w) = lim D(t) exists and depends on {¢?(tm).¢f(tw]) anly  through
300

D(Q); (6.a)

(11) The only finite-cycle attractors are fixed points. (6.b)

We follow, on a D(t) vs. D(0) representation, the time evolution of the

generalized Hamming distance. By assuming the frequent case in which
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- D(w) '
o= ﬁ?:l-)o ) ' (.7)

is well defined, we have the following possibilities (see Fig. 4}:

1) $thangly sencitive: A = @ and D(w) is a discontinuous function of D(0) at

D(0) = O;

ii) Yenaitise: A = w and D{w) is a continuous function of D(Q) af D(0) = O;
1i1) Manginal: A is finite (o > A > 0);

iv) Nonsenaitine: 4 = 0
The generic strongly sensitivel case (Fig. 4(a)) corresponds to Herrmann’s
Chactic II situation, and its particular case for which D(«) 1s a nonvanishing
constant for all D(0) € (0,1)] corresponds to Herrmann’'s Chaotic 1 situation
(the chaotic phase of the CA discussed in Section 2 as well as the pasitive
Lyapunov exponent cases of say the loglistic equation are typical
illustrations). Although we are not aware .of an 1illustration for the
sensitive case (Fig. 4(b)), there is no reason for 1its non existence. The
marginal case (Fig. 4(c¢)) corresponds to Herrmann’'s Frozen II situation (the
genoe Lyapunov exponent case can belong to this class)., The generic
nonsensitive case could in principle exist (as for the sensitive case, we are
not aware of any example at the present moment); its particular case for
vwhich D(w) = 0 for any D(0) € [0,1] corresponds to Herrmann's Frozen 1
situation (the negative Lyapunov exponent case of say the logistic case 1s a

typical illustration).
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4 CONCLUSION

We have defined CA within an unified picture for dynamical physical
systems, and discussed the phase diagram of a recent extenslon of the Domany
Kinzel stochastic CA. One of the relevant phenomena is the spread of damage
characterizing 1its chaotlc phase. We have introduced a generalized Hamming
distance which enables, along Herrmann’'s lines, a convenient classification of
dynamical systems. This classiflcatlon is based on the type of sensitlivity to
the initial conditions and recovers the Lyapunov exponent concept as a
particular case. Specific illustrations of the aensitive and the generic
noraenasitine classes would be very welcome.

I am very indebted to H.J. Herrmann for fruitful remarks concerning the
present proposal for classification of the spread of damage behavlor, as well
as to E.M.F. Curado and J.S. Helman for useful remarks on Table I. Finally, I
am thankful to my collaborators M.L. Martins and T.J.P. Penna for allowing

me to use, In the present talk, Figs. 2 and 3 prior to publication.
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CAPTION FOR FIGURES AND TABLE

Fig. 1 -

Fig. 2 -

Fig. 3 -

Fig. 4 -

(a) p(00/1) = 0 phase diagram of the extended Domany-Kinzel CA; the
solid line belongs to the critical surface separating the Pragen
(M=0 and ¢ =0) and active (M # 0 and ¢y = 0) phases; the dashed
lines belong to the boundary between the active and chaatic
(M # 0 and ¢ # 0) phases. (b) p(00/1) = 0 and p(01/1) = p(10/1) phase
dlagram. The data correspond to simulations with 3200 sites;
transients of 10000 (3000) time steps were used for the
frozen-active (active-chaotic) phase transitions. The damage was
averaged over another 3000 tlme steps.

Phase diagram, for p(01/1) = p(10/1), of the extended Domany-Kinzel
CA.

p(00/1) = 0 and p(01/1) = p(10/1) phase diagram of the CA for nz 1
(n=1 recovers the extended Domany-Kinzel CA). {a) Full
p(01/1) = (10/1) space; (b) n-evolution of the p(01/1) =
p(10/1) = 1 ecritical point; (c) n-evolution of the {p(01/1) =
p({10/1); (p/11/1) = 0) critical point. The dashed lines are guides
to the eve.

Final (D(w}) vs. initial (D(0)) possible behaviors for the spread of
damage. (a) strongly sensitive; (b) sensitive; (c) marginal; (d)

nonsensitive.

Table I - Dynamical physical systenms: (a) continuous time (t € R); (b)

discrete time (t € N). *In this case trajectories are defined 1in
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space-time, consequently a &inany field can be defined (nonvanishing
on the trajectory, and vanishing out 6f 1t); “*for example, a
localized random binary wvariable which, at arbitrary continuous
times, can be zero or one; ***each consecutive iteration can be
considered as a discrete "time", ¢ being one {zero) for all values

of x € R corresponding to present (absent) points.
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TABLE 1

(a) Continuous time {t € R}

CBPF-NF-025/92

x cont inucus discrete
(x € RY) (x € N)

¢

Maxwell equations Classical phonons in a
continuous Schroedinger equation Bravais lattice
(¢ € R")

Navier-Stokes equatlon Lattice field theory

Fleld theory

Newt tion" Random bi ise’”
discrete ewion equatlon . om nary noise
(¢ € N) Special relativity equation

(b) Discrete time (t € N)

X continuous discrete
(x € RY) (x € N)

¢
Real and complex logistic
map

contlnuous

(¢ e R™) Discrete-time field theory Maps coupled on a lattlce
Network of continuous
neurons

discrete Cantor fractal dust®*** Hopfleld neuronal model

(¢ € N) Cellular automata
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