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ABSTRACT

We examine a set of spatially homogeneous and
isotropic cosmological geometries generated by a class of
non-perfect fluids. The irreversibility of this system is
studied in the context of causal thermodynamics which
provides a useful mechanism to conform to the non-violation

of the causal principle.
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1 - INTRODUCTION

One of the main outstanding problems in cosmology is
the so called singularity problem. The standard Big-Bang model
proposes that the Universe evolved from an explosive origin;
which is supposed to be happened a few billion of years ago.
Although such model acquired a character of uniqueness in our
decade; there has been an increasing number of multiple tenta-
tives to overcome this unpleasant situation, because as physi-
cists, it is a. very hard work to deal with such uncomprehensible
hypothesis as a common origin of everything in our very near
past[ 1] .

Here, we are interested only on two particular examples of
alternative: non-singular solutions: one, due to Mlurphy[2 ]

and another due to two of us (Salim & Oliveira) [3), Although both -
these solutions do indeed lead to the avoiaance of singularity
{at least in a finite distance from us), the individual behavior
of each of these solutions ig quite distinct. One of them (M)
is highly unstably, as it has been proved by Belinsky et al[4];
and the cther (S0) is stable in a sense which will be precised
later on. Both solution share another common property: they
describe geometries whose sources are non-perfect fluids. 1In
the last decade the interest on the study of gravitational
processes envolving non-perfect fluids has growing considerably.
Besides the property to make possible to avoid cosmical
singularity £here are other complementary reasons for that.

Just to quote some few: . the description of the interaction of

fields of different types with gravity; identified with some
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exhotic fluids; the gravitational consequences for systems off
thermodynamical equilibrium; and so on.

The work of Belinsky et al was considered one of
the main reasons to believe the ineficiency of non-perfect
fluids in the avoidance of the cosmica; singularity. Indeed,
these authours showed that Murphy's sclution is not stable
under anisotropic perturbations. Once the Universe enter in
this stage it decays almost promptly into a singular solution,
which conduct us back to the original guestion. However, this
is not the case, in (S0} solution. The reason for such distinct
behavior is the use of causal thermodynamics, as we will

see.

Before showing this, let us exhibit the framework

which we want to work here.

2 -~ NON-EQUILIBRIUM THERMODYNAMICS

Although a complete theory of systems far from
equilibrium interacting gravitaticnally is not yet available,
there are some general schemes proposed to describe this situation
and which can be accepted with a reasonable degree of confidence.

Classical non-equilibrium thermodynamics needs
fbesides the standard. variables that characterize the evolution
of a general field) - the introduction of a four-vector
current SY which is assumed to be a smooth well-behaved function

of the universal variables that characterizes the fluid, e.qg.,
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the stress-energy tensor T and the four vector NY which

uv
represents the current of particles. We write

TRT
st = S-(Tas, N,). _ (1)

Let us represent by I the total amount of production
of entropy. Then, the fundamental principle of thermodynamics
implies that £ is a non-negative quantity. Besides, by the
same token, I must' depend on the same set of variables, I = MTaB'Nk)'
This is nothing but the almost direct transposition of
the postulate 6f the continuity equation from thermostatics to
thermodynamics.

From the current of particles N* and of entropy g¥

we construct the quantity

= L N
s = r O | (2)

which defines the specific entropy per particle, 1In this

formula the gquantity n is the inverse of the specific volume %.

If the system is in an equilibrium state we can set ¥ = nv¥

and Tuv = pvuvv - phuv in which huv =9y - vuvv is the projector

in the 3 dimensional rest space of vH. The specific entropy
s = 8{g,v) 1s obtained as a solution of the Gibbs-Duhem equation.

Note that we have introduced the internal energy per particle

through the standard definition ¢ = % -m, and m, is the rest

mass of the constituents of the fluid. The states thus

defined constitutes a linear space E of finite dimension

1

parametrized by the five quantities a 5'% and g* = ? v¥,in

which 1 is the relativistic chemical potential and T is the
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temperature.

In order to deal with dissipative processes we must
extend such standard formalism by introducing some new
dissipative variables. 1In this paper we restrict our consider-
ations to the case in which any direct gravitational influence
can be neglected. Besides.this; we will take for grant that the
dissipation phenomena occurs in such scale that allow us to
neglect the average. value of the curvature of space-time, that
~» = 0; and neglect; furthermore, any heat flux qp and

RaByv
anisotropic pressure 7"V, (Let us stress here that such

ig <

simplification is not dictated by any thermodynamical property
but it is due only to our actual purpcse here to work in
spatially homogeneous and isotropic cosmological models.) Thus,
within such simplified hypothesis there is no room for qu and
n“v.to.appear in our present analysis.

We can then set

Tuv = quVv - (Pth+“’huv (3)

in which Pth is the thermodynamical pressure and 7 represents

the isotropic viscous pressure. From the conservation of 'I'mJ

we obtain
6 + (p + Pen * m)6=10 .

The specific entropy s depends, in the general case,

on the internal energy &, on the specific volume v and on m:
s = s{e, v, W),

The Gibbs-Duhem generalized relation provides the
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evolution of s. We adopt the standard equations of state

and set
3s _ 1
3e T
as _ Pth
3v = T
s 2,
am ~ T *

The parameter o, which is a function of ¢ and v is
related to the relaxation time of the dissipative processes. The
gquantities T and p are straightforward generalizations of the
corresponding variables in the equilibrium. The Gibbs-Duhem
equation yiedls

TS = €4 Py, ¥ + OV wa . (4)

The phenomenological law which describes the evolution of the
dissipative variable is obtained using the equation of balance

of the entropy

W ., oM
s¥  =ns + I
TR Y

=}20. - {5)
in which IVY is the flux of entropy.

We now move to the post-linear approximation and
make the standard hypothesis that the flux Iu depends on the
same set of variables which guide the evolution of s. This has
the direct consequence that the expansion of IY becomes

proportional to the heat flux, yielding in the present case that

1" vanishes. Using (4) and (5) and the form of L as being given by:
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] ='% {at - 08)7 . (6)

we obtain for the expansion,up to first order,

an = M(1)ﬂ + 6 . {7)

The Newtonian limit of this theory implies then that the

parameter M(1) is given by

in which x is the bulk viscosity coefficient.
We have thus achieved our géal in the form of the
equation (7). Let us now apply this formalism into the cosmical

scenario.

3 = THE COSMIC VISCOUS FLUID

We will take the geometry as being given by a

. spatially homogeneous and isotropic Universe:
ds? = dt? - R? (t) (Ax? - dy? + dz?) . (8)

We have chosen to work in flat (euclidean) space
section to simplify our presentation here. For the fluid
- velocity VP==GE in the gaussian system of coordinates (8), all

kinematical parameters. vanish identically except the expansion

II% = % « Then if (8) is to be a solution of

Einstein's egquations of,General‘Relativity; it follows

factor H
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naturally that the heat flux and the anisotropic pressure must
. wvanish. Then
Tuv = oV, - (Pin * “)hpv :
The viscous pressure must satisfy the causal requirement

T+ T =<3EH . (9)
The remaining set of Einstein’s equations are

p.= 3H* - A ' (10.a)

—2H - 3H? + A - (10.b)

=1
+
P
D
It

in which p, . = Ap. It seems worth to remark that contrary to
the case of the standard model (in which entropy is conserved
throughout the whole history of the Universe) or like in some
previous viscous models e.g. Murphy solution (in which,
although entropy is not a constant, there is not an evolutionary
equation for the bulk viscosity), here we have introduced
another dynamical variable © governed by equation (9) giving
origin to a coherent causal scheme.

Instead of looking for special solutions of this
set (9, 10) of equations we decided to examine the whole set of
the integral curves. This is possible due to the fact that (10)
is presented as an autonomous planar system of differencial -
equations in the variables m and H that defines the phase -
plane (m, H).

We have

B = FH, 1) ='-'%'(1 £ AH - F A (11.a)
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faGH, M =-2— -3u, (11.b)
0 o

and eq. (10.a) is the equation of definition of p.

The existence of finite singular points (that is, the
points (H, wo) in the phase plane in which the functions F and
G vanish simultaneous) depend on the value of the cosmological
constant A. As we will see later on; the topological structure
of the integral curves in the neighborhood of these singular
points depends on A too. However; the behaviour at infinite is
independent of A. Just for simplicity we restrict our
considerations here to the case in whiqh E and 1 are constants.
We set § = % a = constant. For A < - ET%;jTT there 1s no
singular point in the finite region. Bgyond this value, two
distinct singular points appear {see fig. 1). Let us make some
comments on the general behaviour of the integral curves in the
phase plane. .

In the case of_Af< —.§TT%%T? . the non existence of
singular points makes the configuration in the phase plane to
be given as in fig. 2. A solution which starts at the singularity,
in point A; ends at the antipodal singularity A'; can have two
typical behaviour. Either it rests during all its history wiht
positive viscosity (w > 0) or it enters a region which changes
the sign of n. In this second case it can attain very high
values of (negative) T corresponding to very small values of the
expansion before the entrance in the same regime as in the
first case near A'.

The configurations depicted in the graphs are
almost self evident. To exemplify; let us just make some

comments on fig. 3 in case A =0 and fig. 4 for A > 0. There is

almost no particular distinction between the configurations in
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the cases A = 0 and A > 0. 1In these cases there are two

finite singular points: P1 and P2. For A = 0, the point P1 is
the origin 0. The origin is nothing but the unstable Minkowski
space-time. The point Pz'represents a de Sitter Universe with
expansion H = 37%%7T and constant viscous pressure T = §{¥§%T.
Near the point P, we can approximate the generic behaviour of
the Universe by R(t) v exp 37%%77' Note that such de Sitter
solution is stable by all perturbations within the present
scheme (that is, for perturbations of the system of eq. (11)).
There is a class of cosmological models that starts at point A
as a singular cosmos at past infinite and goes into the de
Sitter attractor P. All these solutioﬁs have an infinite
expansion at A and acquire rapidly a negative viscous pressure, which is a
necessary condition to enter in the neighborhood of the de
Sitter cosmos P. Note that A and B (besides the antipodals A' and
B') are singular points at infinite. At point A there exists a
singularity with p = 7 = ©», In the case A > 0 there are two
finite singular points (see fig. 1). Point P, does not
represent a Minkowski space-time, but a de Sitter Universe

which ever contracts by an ammount given by

a 3(A+1)2A
30 T) (/1 + RE

pressure.

H = - - 1) and a constant viscous

From point A there is a separatrix ', which goes

1
into the Minkowski origin 0. If a curve starts at A with an
initial value of viscosity m higher than that of curve P1

then all these solutions penetrates the region of contraction

(H <0) and end at the antipodal singularity A'. There are

three more curves which attains the Minkowski world at 0 (in
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case A = 0). The curve called T3 represents a world that

starts with m = -» and an infinite density. It separates the
phase plane into two regions: If at B' a curve has a.valﬁe of

H bigger (in absolute value) than its corresponding value at
F3.then it belongs to a class of integral curves which
represents an infinite contracting Universe which ends at the
singular point A'. The curves which near B' have smaller values
of H than F3; they all have the same fate: they end at the
de Sitter model at Py.

Finally; separatrix T, and Ty have very distinct
behaviour: Curve F2 starts at the Minkowski world at 0 and
ends at the singularity A'; Curve I, stdrts at the Minkowski
world at 0 and ends at the de Sitter world P2.

For A > 0 there is a particular solution that starts
at the infinite point A and ends at de Sitter P,. The
analytical form of this case has been exhibited recently by two
of us [2]. One can exhibit the analytical form of this solution,
which has no physical singularity:

o S =€ 5}
R(E) = Roexpl2, (1+4) {At - 557 exp (77 &

in which 1) is a constant.

Remark that any small perturbation of this geometry
have the same qualitative behaviour, ending soon or later in
the de Sitter cosmos P,. This property exhibits the main advantage
of the viscous causal mechanism of avoidance of singularity:
its stability behaviour.

In order to complete the analysis, we depict the
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case where A = gTi%%T? in fig. 5. 1In this case there is only
one singular point in the finite region. Such point represents
a de Sitter Universe, that is generically unstable although
having in the phase plane a domain of stability. The analysis
of the curves are, in general, similar to the precedent cases.
Finally, let us point out that for A > 0, there is a
possibility of the appearance of classically forbiden regions
in the phase space. Such regions are characterized by p < 0
{see fig. 6)}. Thus P, for instance, which represents the
unstable de Sitter Universe, is not a physically satisfactory
solution as well as all remaining curves situated inside the

region shadowed in fig. 6.
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FIGURE . CAPTION

Fig.

Fig.

Fig.
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Fig.

5 = The case A = -

1 - P, and P., are the singular points of system (ll) in the

1 2
finite domain.

Campactification of the whole plane of system (11) =

Points A,A',B and B'are gingular points at infinite. In

0'2

this case f < - ———
3(1+7)2

and there is no finite singular
paint.

The case A = 0. Note that besides the origin (inkowski
space—-time) there is another singular point in the fi-
nite domain for Ho = % I%T and LI 5%%;17 which - re-
presents a de Sitter Universe without cosmological con-

stant. The role of A is played by the viscasity w.

4 - The case in which A. > 0. See the text.

a?

" . 5" See the .text.
3(1+2)
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