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The simple phenomenological model for proton-proton process from Ref.1 is developed. The
model combines a fireball formation process via string fragmentation mechanism for the space-
time development of a non-perturbative fire-tube of excited vﬁcuum, with a subsequent final
hadron production through fireball decays. The effective string tension is proportional to the
fire-tube transversal area determined by the overlap area of the two colliding protons. The
overlap area is a function of the impact parameter and the proton-proton total cross-section.
An excellent agreement with experimental data is obtained for 3 wide energy range covering
from /3 ~ 20GeV to 1 TeV.
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1. Introduction

In Ref.l, we proposed a simple phenomenological model for multiple pion
production mechanism in proton - proton collision process. There, we suppose
that two colliding protons transform themselves into coloured objects due to
exchange of their sea quarks(anti-quarks). The two receding coloured objects
generate a nonperturbative chromoeletrical flux confined to a tube-like volume
between them whose transversal area corresponds to the proton-proton overlap
area, for each impact parameter. This fire-tube is regarded as a single effective

one-dimensional classical string with a tension coefficient given by,

k= e Ald) (K1)

where ¢, is the volumetrical energy density of the chromoeletric tube, and A(b)
represents the transversal area of the tube. We may express this transversal area

as,

Alb) = f(b) o1et(\/3) - (1.2)

where [(b) is a universal function of impact parameter determined by the geomet-
ric property of proton structure!, and 6:,(,/3) is the total nucleon cross-section.

The space-time development of this effective string is discribed by the mech-
anism analogous to that of Lund model?, except for the observable hadron produc-
tion process. In our model, instead of direct production of hadrons, the string
fragmentation leads to a formation of a set of intermediate statistical massive ob-
jects (fireballs) which subsequently decay into observable hadrons. {This two-step
mechanism was aiso suggested for ¢ - Z jet phenomena3®}.
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A preliminary Monte Carlo calculation of the model described above' has
shown it to be promising in reproducing the rapidity and transversal momentum
distributions and pion multiplicity for \/s = 19GeV. In this paper we present
results of calculations based on analytic formulae for the string fragmentation
process*, covering a wide energy range from /s & 19GeV 101 TeV

2. Fireball Mass and Rapidity Distribations

As previously mentioned, we obtain analytical expressions for fireball distri-
butions by a effective string fragmentation mechanism. The string constant, in
our model, is proportional to the energy density of the firetube and to the two
protons overlap interaction area. For simplicity, we consider that the endpoint
particles are massless. This is a good approximation when the total incident
energy is much higher than masses of endpoint particles.Classical trajectories of
the two endpoint particles are represented by two interwined zig-zag lines which
form periodically inclined rectangles in the z —{ plane (see fig.1). The inclination
and area of these rectangles are related directly to the velocity and invariant mass
of this system?. In addition to the above described motion of a classical string,
another basic ingredient of the model is the stochastic breaking of the string at
any point in between the two endpoint particles. Such a breaking is supposed to
occur due to quantum mechanical pair creation of quark and antiquark. Once
a breaking takes place, the original string splits into two substrings, each of
them having a definite energy and momentum according to the coordinates of
the space-time point where the string breaking took place. If string breaking oc-
curs at n different points, n + 1 substrings are formed. Now, instead of assaming
that the above process of string breaking continues indefinitly, we consider here
that when any of substrings closes its period of oscillation for the first time, the
substring turns into a highly excited object (fireball), converting the collective

oscillation energy into internal excitation energy (fig.2). We, therefore, will not |
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consider the fragmentation of substrings after the first period of oscillation.
Let w be the probability of string breaking per unit time anrd unit length.
Then the probability F, that the original string breakes up into exactly n +1

substrings is given by*,

FPo = / [ &zy &2y ... Lz, W e~VA (2.1)

where A = A{z),22,...,Zs) i8 the area of hatched domain in fig.2. The integration
should be done in the rectangle S, with the condition that all z's are causally
disconnected from each other. The probability P, is a Lorentz scalar and a
fanction of w,k,andM, where M is the initial CM energy (/). Eq. 2.1 can be

rewritten in the form of a recursion relation as,’

P.(M;w,k) = [d’z,,wc"""“ Pn—1(M'; w, k) (2.2)

This recursion relation can be solved explicitly (AppendizA).

Now, with the probability P, for (n+1) generated strings, it is possible to
calculate the mass and rapidity distribution of fireballs as the probability to find,
in the final configuration of string fragmentation, a fireball for which the mass
and rapidity are specified. For convenience, we treat separately two groups of
fireballs, those containing the two endpoint particles of the original string and
those coming from the inner parts of the string. We shall refer to the first group
as "endpoinf® fireballs (ep) and the second as "non—endpoint” (n.ep) ones. (Fireball
distributions are calculated in detail in AppendizB). For endpoirt fireball mass

and rapidity distribution we obtain,
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(3‘;%),, = “p(“%"“) O(Fy+in(M/m))  (23)

where the minus and plus signs of y are for the fireball from the right and left

respectively and Z = wM?/(2k?). For non-endpoint case we have,

(%)“.gp = 2m E‘l(:) - El(m2ey““_y)

- EymPemett) + B (m?)] Ot -0 (24)

where E;(z) is the exponential integral fanction, m = m/w/{2k2), Ymez =
In(M/m) and the Heaviside © function comes from the energy conservation.

3. Final Hadron Spectra

If we suppose that the fireballs are really statistical objects, the decay prop-
erties of a fireball should be completely specified by its mass. For example, for
a thermal model, the hadron (for simplicity, we consider only mesons) spectrum

from the decay of a fireball with mass m may be expressed as,

b

E (d@N’/dpt”) - % e~ E[T(m) — = e~Et cosh(y—ys)/T(m) (3.1)

where E and p are the energy and momentum of eniitted pions and T = T(m)
is the temperature of the fireball. For non-endpoint fireballs the normalization

constant A, ., can be determined by the conservation of the total energy,
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/ E{d® Ny /dp*)dp = 44 ep m3TKa(my [T) = m (32)

where m, is the pion mass and K,(z) is the modified Bessel function of n order.
The average multiplicity of produced pions from a fireball < fi(m) >n.p can be

calculated as a function of m as,

< e (M) Smep = / Pp(d® N/dp®) = 4An.cpmaTKr(ma /T)
= (m/mx)K, (m,/T]/Kg(m,/T)

(3.3)

and

2
<A Deharged= 3 <ng >

The p; distribution of pions from a fireball is given by,

(%)n.w - 3% dy = 24K (%) = % mz T K, ((m ) (3.4)

where E; = \/p? + m? is the transversal energy. The avarage p; value is then,

dN, _ meTK2 (%)

For the rapidity (y) distribution of pions we have,
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dN, d’N, _ 2Am,T 1
dy ), ﬂ'ﬁ' x  cosh(y - ys) (36)
1 - oL cosh{y— ’
1 s cosh{y—yp)
[ ¥ coshiy—ysi] ‘
where yp is the rapidity of the fireball.
On the other hand the pseudorapidity distribution is calculated as:
dN, _ me \° ’m,
(?q—)mp = 24 (m) ® (T coshyg, tanh n; tanh yg) (3.7)
where ®(a,d) is
_ [T 2 fiTE i)
®(a,b) = , o € (3.8)

with 6 = {ms/T)coshys and b = tanhq tanh yp.

To fix those quantities uniquely, we have to specify the temperature T, or
equivalently the mean multiplicity < ns(m) >, as a function of fireball mass. It -
has been suggested that the mean pr value is related to the fireball mass® as,

<pr>= 25m!/7 {3.9)

which in term of the temperature T also becomes similar to = m!/? according to
Eq. 3.5. For large m, T is a very slowly varying function in m, so that the mean
multiplicity becomes almost linear in m. Here we parametrize < n«(m) > as
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< n(m) > = \/Const. m2 + ng? (3.10)

where Conet. and n, are parameters. From the energy and momentum conser-
vation, n, > 2. Once Const. and n, are given, we calculate T = T(m) from Eq.
3.3.

In the case of the endpoint fireballs, we have decay of pions as well as a
leading particle decay (proton decay). For these distributions, the normalization
conditions are given by:

—
.
S5
\—.—/
S
-~
n

/ (":g') &p = ny (3.11)

and

< Beharged > = % < ny >+l (3.12)

Finally, from all the expressions above we can calculate the final pion spec-
trum of a string fragmentation as a superposition of fireball and pion spectra.
For example, for pions from non-endpoint fireballs, the average total multiplicity

of pions n , is given by,
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Pe., = / T im < ne(m) Snep (Q) . (3.13)

m.(n dm n.e

where 1, is the inferior limit of fireball mass and my,,; is the maximum fireball
mass limited by the kinematics. The fireball mass distribution dP/dm can be
obtained by integrating eq.2.4 on y (see Appendix B).

Also, the transverse momentum distribation can be calculated by,

(%)n-ep ) L':' am (%),.,., (55),,_,’ (3.14)

and the rapidity and pseandorapidity distributions are given by,

dN, _ Mmse Ymss dN &P
(W) - [‘muin dm [-,Ill dyf& (Ey—')n.ep (W) n.ep (3'15)

dN Mmes Ymax JZP
) = d d 3.16
( d'} ) v/‘m-u'n m/ —¥maz y!. (dﬂ’ ) n.ep (dmdyjs)ﬂ cp ( )

Identical expressions are obtained for the final pion spectrum for the endpoint
fireball decay, except that we should calculate the temperature T.p = T(m — my).

The nondiffractive distributions are finally obtained as,
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<N Dapdif = <ﬂ>n.¢p+<ﬂ>ep

4. Resunlts and Discussion

CBPF~NF-024/89

(3.17)

(3.18)

For a given incident energy, the final fireball mass and rapidity distribu-

tions should be integrated over all possible impact prameter values. Our model,

however, does not include gqnantum diffractive mechanism, which is essentially

a peripheral phenomena. In fact, in Eq.(1.1), k tends to zero for large impact

parameters, resulting in a series of very small-mass fireballs which are incompati-

ble with the assumption of the existence of mmin. Experimentally this diffractive

process has ~ 20% of the total cross section. Therefore we assume that our

model is applicable for impact parameter values up to 90% of its maximum value
bmaz = /Ot /%, and compare the results to the experimental non-diffractive data.

Our model contains the following adjustable parameters:
Mmin : lower bound of fireball mass.

: string breaking probabllity. |

¢ : volumetrical energy density of fire-tube.

Const., n, : Parameters of fireball decay.

In this calculation we have assumed the lower bourd of the mmin parameter

as 0.5 GeV; the final pion distributions are not much sensitive to this threshold
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mass except for low energy collision. In addition, as seen in Appendiz A,the
gtring dynamics almost scales with 1he parameter ¢2/w at high energies. Thus we
choose arbitrarily the string breaking probability value as w = 0.02/fm?. Then we
are left only with one adjustable free parameter ¢, for the string fragmentation
mechanism.

The value of n, should be of the order of « 3 according to the well-studied low
energy data. We took n, = 2.7. We adjusted ¢, and Const. to reproduce the energy
dependence of the pion multiplicity data (Table 1). We obtain ¢, = 0.63 GeV/fm?
and Const. = 0.225. Note that this value of ¢, is of the same order of the proton
energy density,

Table 1

VEHGeV) <1 Dind <N Snd  <B Dcale

20 1.7 8.5 6.3

53 11.8 12.97 11.5
200 18.9 20.8 19.6
540 27.5 29.4 27.4
900 . 32.6

With these parameters, we calculate the final pion pseudorapidity distribu-
tions for various CM energies. The results are compared with the available ex-
perimental nondiffractive data’~1% in fig.3. The energy dependence of the central
value of psendorapidity distribution dNy/dnle is also shown in fig.4.

We would enphasize the excellent agreement of our results with the experi-
mental ones in a very wide CM energy region.

The parameters Const. and n, govern the decay of fireballs, determining
uniquely the temperature as a function of fireball mass m (see fig.5). In fig.6
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we also show the pion multiplicity as a fanction of fireball mass. The value of
Const. = 0.225 which adjusts the firal pion multiplicity seems to give a relatively
high temperature value for heavier fireballs, resulting in a too high < p; > at
V& = 900GeV. In order to obtain lower temperature values preserving the be-
haviour of the mean multiplicity and rapidity distribution, we should discard the
assumption of the isotropic fireball decay. In fact, the assamption of Isotropicity
of statistical objects immediately after the first period of oscillation of substrings
might have been too restrictive. They might still keep some longitudinal collec-
tive motion. Such an effect certainly lowers the temperature without increasing
the mean multiplicity of hadrons from these fireballs and does not affects the
behaviour of the psendorapidity distributions except for the very central region.

In fig.3, both the experimental points’ and calculated curve for /3 = 20GeV
are rapidity distributions and not pseudorapidity distributions. In order to see
the difference between the rapidity and pseudorapidity distributions, we compare
them in fig.7. We see from fig.7 that for higher incident energies, their differences
at y =0 is ~ 10%, whereas this difference becoi1es around 20% for lower incident
energy.

We conclude that the pheromenological fire-tube model applied in a impact
parameter overlap integral approach gives a good description of multiparticie
production process. Despite its great simplicity, the calculated results are satis-
factory with respect to those quantities which are most important in the fature
application of our model to the analysis of nucleus-nucleus collision.

In our model, the property of increasing total cross section with /3 is incor-
porated into the string tension by the geometrical overlap area of two colliding
protons. In fact, this procedure is fundamental to reproduce the energy depen-
dence of mean multiplicity and other quantities. Thus the geometrical factor
plays some essential role for various observables as was discussed in ref. 13,14.
Further studies on this point are in progress.
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Appendix A - string fragmentation probability

Let w be the probability of string breaking per unit time and unit lenght.
Then, the probability P, that the original string breakes up into exactly n+1
substrings is given by?,

Pan = f / &z d%z; ... dzp w" A (A1)

where A= A{z(,z;,...,2,) is the area of hatched domain in fig.2. The integration
in £'s should be do.ae with the condition that all z's are caunsally disconnected from
each other. The probability F, is a Lorentz scalar and a function of w, k,andM,

where M is the initial CM energy (,/7); Pa = Pa(M; w, k).
Eq. A.1 can be rewritten as

P, = [ Bzn we A / / d&z; ... &z, W ¢4 (A.2)

where A, is the area of rectangle indicated in fig.2 and A; = A— A;. Froe Lorentz
invariance, it is easy to recognize that the second part i1. the right hand side of
eq. A.2 is equal to Po—1{M';w, k) where M' = M'(z,23,...., Zn-1) Is the invariant
mass of the part of the string corresponding to the area A;. Therefore, eq. A.2
forms a recursion formula,

Pa(M;w,k) = / Pz we M P (Muw k) (A.3)

To handle farther eq.A.8, it is convinient to introduce the llght-cone variables,
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k
u=ﬂ(z+l) (A4)
v=k/M(t — 2)

In the c.m. system of the original string, we can express A; and M’ explicitly as,

M = MJ/T=tn) tn '

so that eq. A.3 becomes,

Pa(M;w,k) = ?i%f_ L l ﬂ " dudv exp (—1"%-’ u) PM(1-v)su,k)  (AS)

We can see from eq. A.6 that P, (M;w, k) scales as a function of z = wM?/2k?, viz,

Poa(M;w, k) = Pu(2) (A.7)

and after some calculations we find that eq. A.6 can be cast into,

Pulz) = ﬁ "t k(z,8) Paey (22) (45)
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where,

1
k(z,f) = z¢7* L -:f-e" ds (A9)

Eq. A.8 can also be written as,

Pa(2) = e~ L " dt %é A ' ds Pa_s(s) (A.10)

The recursion relation eq. A.8 or eq. A.10 can be solved witk the siarting
fanction,

Po(z) = ¢ (A.11)

Now, the multiplicity distribution of fireballs is determined by functions F.(z} -
which satisfy the recursion formula eq. A.8 or eq. A.10 with the initial condition
eq. A.11, The recursion formula can be solved explicitly in the form of power

geries in z. First, we calculate P(z) as,

Piz) = ¢ ﬂ a1 -t = e 2_;“5-'1 . (A12)

We now then calculate the integral of P, as,
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$

¢ 1
ds Py{s) = —j e~ 4" ds
.L l() r= rr! 0
o0 [+ -]
_ 1, fre1em
- ; e “; r+1).r+1+m)
= C{r,2) |
— p—t 3 k
= ¢ ; - t
where,
-1
Cry) =Y 1
=1 J

Substituting eq. A.13 into eq. A.12 with n =2, we get,

Pi2) = e* ("'
Repeating the procedure, we obtain, for general n, |

C(r n) o
Tl

Pal2) = €* E

where C(r,n) can be determined by the following recursion formula,

— -1,n-1)

Clr,n Clkn-1) = Clr—-1
() = 3 FOWn=1) = Clr-1,m) + 20221

(A.13)

(A.14)

(A.15)

(A.16)

(A17)
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The above equation holds for r > n > 2. For n=1,

C(r,1) =1 Jorallr > 1 (A.18)
In particular, we have,
Cla,n) = —1 (A.19)
) Im)-! .

From eqs. A.17 and A.18, it is easy to prove that,

r
C(r,n) = r (A.20)
n=l
This reflects in eq. A.16 as,
o
Y Pafz) = 1-¢ {A21)
n=1
With eq. A.11, we obtain,
- +]
Y Pale) =1 (A.22)

n=0
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which is the expected result since the left-hand side of eq. A.22 is the total
probability for a string to break into any number of pieces including the case
of no breaking. We show in fig.Al, the multiplicity distribution of fireballs for
several values of z.For very large values of z (In(z) 3» 1), it can be shown that
F,(z) approaches asymptotically as

Pa(z) — 1/z In(2)"/(n — 1)t (A.23)
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Appendix B - Rapidity and Mass Di: tribution

The rapidity and mass distribution of fireballs is given as the probability to
find in the final configuration of string fragmentation a fireball whose rapidity
and mass are specified. In our picture, this is given as the probability to have
two adjacent breaking points (z,,¢ )} and (z2,¢;) which satisfy,

K(zg - 22)? - (b — a)?] = m? (B.I)
and,

(t; - !g) / (21 - zg) = taﬂh L] (32]

where m and y are mass and rapidity of a fireball, respectively. In terms of v and

v light-cones variables eq. A.4, we can express m and y as,
m
Uz —t; = 47 ¢
M (B3)
M
For endpoint fireballs, the mass and rapidity distribution is calculated as,

(;%)ep = T e (=37 ) O(Fy +in(M/m)) (B4)
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where the minus sign of y is for the fireball from the right end-point, and the plus
sign is for the left end-point. ©(z) is the Heaviside step function. The average

number and mass of these fireballs are calculated as,

<n>p= 21-c"%)

and

<Mm>yp = Mz / j dudy{l—u)ve™
= /3 M/\/z 7(3/2,)

wherev(p, z) is the incomplete gamma function,

1p,z) = ﬂ -1 et gt

For large values of z >>1,< m >, rapidly converges to,

(B.5)

(B.6)

(B.7)

(B.8)

On the other hand, the rapidity and mass spectrum of non-endpoint fireballs can

be calculated as,
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I 1 1 V1
(85)., = [ oo

6(m— M\/(ug —v1){va — )} & [y - =in (-(('u)).)] ‘ e~ iUz

-t e (B9
=m (Ff) [Em(z] E’m (]7_) - Ein (HF) + FEin (%)]
ol (&) 2] o+ ()
where Ein(z) is defined as,
Einfz) = A T g = B + infe) + 4 (B.10)

- with 4= 0.57721...(Euler’s constant) and E;(z) is the exponential integral fanc-
tion. It turns out to be convinient to use a dimensionless variable m = m/w/2kz,
Then eq. B.9 can be rewritten as,

(3‘:{;)“_‘? = m[E,(z) — By (m3etmes=?)

— Eymiermeety) 4 E:(m*)] OlZas—¥)  (BA1)

for —ymaes < ¥ < Ymoz » With ymaz = In(2/m?)/2. Since E;(z) is a rapidly decreasing
function in z, we can see from eq. B.11 that the rapidity distribution for very
large z values tends to have a plateau in the central region (see fig.B1), whose
central value is given by,
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2P
(W) nep Iy:O — 2mE; (m’) (B. 12)

The mean multiplicity of non-endpoint fireballs is calculated as,

~% — 1+ Ein(z)

The probability of forming only one fireball is given by eq. A.11. Thus, the total
mean multiplicity of fireballs < n > Is given as,

<fn>

c* +‘<ﬂ>¢p + <n >n.ep

(B.14)
= 1 4 ¢* + Ein(z)
For large values of 2, this increases asymptotically as,
<n>— In(z) + 1.57721 + O(e™*/z) (B.15)

If we integrate eq. B.11 in y fixing m, we obtain the normalized mass distribution
of non-endpoint fireballs as,

115 G’%)n.,, <n>,. - fm d '”( ) (ﬁtf) et (B.16)
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For large 2 (see fig.B2), eq. B.16 tends to,

1 (dP %0 t\ _
P (ﬁ)w - om fm dt In (m) ¢! (B.17)

We also can calculate the average mass of non-endpoint fireballs as follows,

d&*P
< m >ﬂ.¢p a‘>_‘9‘ / [ dm dy m (m)
n n.ep

= m -/; d:; j dv, f dusy / V1 dva /(U3 — 61)(th — vg)e~ 4%
-3 ngﬂ,,, (;) (uz) {‘”(2)1(5/2 z) — 1a(5/2,2))

(B.18)
where we have introduced a new fanction v,(p, z) by,
]
nip, z) = / dt £7=1 In(t) et (B.19)
0
For 2z >> 1, this average mass converges to,
B (B In(2) - 0.7031
<m0~ F\T)  In(z) =04z (B:20)
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Figure Captions
Fig.1 String breaking. When a string breaks at a space-time point P, two substrings
are generated.
Fig.2 Formation of fireballs. Whenever two endpoints of a substring coinside, the
sabstring is considered to turn into a fireball. The integrals in eq. 2.1 should

be done inside the rectangle S,.

Fig.3 black squares — UA5 NSD experimen’al pseudorapidity data: ref.8-10. Open
squares — experimental rapidity data: ref.7.
Solid curves — pseudorapidity distributions from our model. Dashed curve —

rapidity distribution from our model.

Fig.4 Central density p(0) = %I,,-.;o as a function of CM energy. black squares —
UAS NSD (ref.10). Dashed curve — our calculations.

Pig.5 Fireball temperature as a function of fireball mass.

Fig.6 Pion multiplicity as a function of fireball mass.

Fig.7 Rapidity (solid curves) and Pseudorapidity (dashed) calculations.
Fig.A1 Multiplicity distribution of fireballs.

Fig.B1 Rapidity spectra of fireballs for various massas /. Solid curves are for z = 50
and dotted curves are for z = .

Fig.B2 Mass Spectra of fireballs as fanction of .
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Fig. 2
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