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Abstract

The recently suggested SEE (Satellite Energy Exchange) method of measuring

the gravitational constant G, possible equivalence principle violation (measured by

the E�otv�os parameter �) and the hypothetic 5th force parameters � and � on board

a drag-free Earth's satellite is discussed and further developed. Various particle

trajectories near a heavy ball are numerically simulated. Some basic sources of

error are analysed. The G measurement procedure is modelled by noise insertion to

a \true" trajectory. It is concluded that the present knowledge of G;� (for � � 1

m) and � can be improved by at least two orders of magnitude.

Key-words: Space experiments; Measurement of G.



CBPF-NF-023/93 1

The gravitational constant G is at present the least accurately measured fundamental
physical constant: the error ÆG=G is about 10�4 , while the other constants are known up
to 10�6 or better [1-4]. Despite the repeated suggestions of laboratory G measurements
at the level of 10�5 not a single group has penetrated beyond 10�4; moreover, three of
the four best absolute G determinations are at variance with each other at their accuracy
levels. There also exist some geophysical data on G which disagree with the laboratory
ones [3].

Apparently suggestions to measure G and other gravitational interaction parameters
in space, by precision tracking the motion of arti�cial bodies ([5,6] and others), are more
promising: one can avoid environmental inuences diÆcult to account for and create such
conditions that a particle be not subject to forces much greater than those under study.

The approach of Ref.6 is to study the relative motion of two bodies on board a drag-free
Earth's satellite using the horseshoe type trajectories [7]: the lighter body (\particle"),
moving along a lower orbit than the heavier one (\shepherd"), overtakes it and, due to
their gravitational interaction, gains energy, passes to a higher orbit and begins to lag
behind (the Satellite Energy Exchange, or SEE method). The interaction phase can be
studied within a drag-free capsule (a cylinder 20 m long, about 1 m in diameter) where
the particle can remain as long as 105 seconds. By [6], particle trajectory measurements
enable one to improve the existing knowledge of G by 2 orders of magnitude. Moreover,
the 5th force parameter � for a certain range of interaction lengths � and the possible
equivalence principle (EP) violation parameter (the E�otv�os parameter �) can be also
measured with an unprecedented accuracy. Ref.[6] contains a number of details of the
proposed experiment, in particular, it is shown that optimum orbital heights H range
from 1390 to 3330 km.

We have carried out a further study of the SEE method. As compared with [6], a
wider range of particle trajectories has been investigated, various sources of error have
been studied and some new estimates concerning the capabilities of the method have been
obtained. The results are as follows.

1. The particle motion is governed by tidal and inertial forces and by interaction with
the shepherd. Estimates of inuence of di�erent factors on particle motion are given in
Table 1. The upper bounds of displacements are estimated as Æl = at2=2 assuming that an
acceleration a acts in the same direction for the time t (either 104 s, or half orbital period,
i.e., about 1 hour, for external tidal forces whose inuence is actually periodical). For
de�niteness we assumed that the orbital radius is a = 8000 km and the particle-shepherd
distance is 10 m (half length of the capsule). The value of Æl is of particular interest since
it is the particle position that is actually measured.
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Table 1

Contributions to particle motion dynamics

Acceleration Resulting
Factor created displacement

(cm=s2) for t � 104s

1. Quadrupole tidal forces � 10�8 � 10
2. Higher

geopotential harmonics � 10�12 � 10�4

3. Solar tides � 7 � 10�11 � 3 � 10�4

4. Lunar tides � 3 � 10�10 � 10�3

5. Jovian tides � 5 � 10�16 � 2 � 10�8

6. Lunar nonsphericity � 5 � 10�18 � 2 � 10�10

7. Relativistic tides � 10�12 � 3 � 10�5

8. Uncertainty of
shepherd's orbit � 3 � 10�13 � 10�5

9. Possible EP violation
(� = 10�13) � 7 � 10�11 � 3 � 10�3

Assuming that the measurement error is no less than 10�6 cm (about 1/50 of the
visible light wavelengths), the factors 5 and 6 from the table are manifestly negligible,
like many others of similar origin. The factors 2,3,4,7 are to be included in the computer
routine of an actual experiment but can be neglected at the planning stage aimed at
working out the experiment strategy.

E�ects changing the satellite orbit are not included since the actual orbit is assumed
to be known from radar or laser measurements. However, the corresponding (possibly
systematic) error implies tidal acceleration uncertainties as reected in line 8 of the table.
One has to conclude that this uncertainty is a key factor for the experiment viability since
a better accuracy than that to �R � 1 cm is not expected in the coming years and even
1 cm is questionable. On the other hand, it makes no sense to measure particle positions
up to a certain Æl for such a period t that the above uncertainty is greater than Æl. For
instance, if �R = 1 cm and Æl = 10�6 cm, a particle trajectory measurement should not
last longer than � 3000 s � 1 hour.

2. We considered the equations of particle motion with respect to the shepherd for
arbitrary satellite orbits and arbitrary capsule orientations, including linear and quadratic
terms in the ratio s=R where s is the shepherd-particle distance and R is the shepherd's
separation from the Earth's centre, which provided the required calculation accuracy. It
has proved to be impossible to �nd even approximate analytic solutions, even for the
simplest situation of particle motion in the plane of a circular orbit of the shepherd in the
spherically symmetric Newtonian �eld of the Earth when the equations are

�x� 2! _y = 3!2xy=a+ (M +m)(x=s)dU=ds (1)

�y + 2! _x = 3!2y + 3!2(x2 � 2y2)=(2a) + (M +m)(y=s)dU=ds: (2)
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Here x is a backward along-track coordinate, y is directed from the Earth along the
geocentric radius vector and ! = (GME=a

3)1=2 is the orbital frequency (ME is the Earth's
mass). The potential U(s) can include, along with the Newtonian term G=s, the 5th force
potential (G�=s) exp(�s=�) or several terms of this sort.

A possible EP violation at distances of the order of the Earth's radius leads to emer-
gence of an additional term of the form ��!2a at the right-hand side of (2).

Elliptic satellite orbits and (or) inclusion of the Earth's quadrupole gravitational po-
tential lead to certain complications in the equations of motion.

3. In our computer simulations we solved the particle equations of motion for the
following shepherd orbits in the Earth's Newtonian gravitational �eld: (i) circular in
spherical �eld (Eqs. (1) and (2)); (ii) circular equatorial, in spherical plus quadrupole �eld;
(iii) elliptic with eccentricities up to 0.05 in spherical �eld. The rational extrapolation
method was used, with a variable integration step and accuracy control. In some cases
parallel calculations were performed by the Runge-Kutta method, by the 5th order Adams
method and by calculations with time reversal (from the �nish to the start of the same
trajectory). It was concluded that the computational error was within 10�10 cm, far
beyond the achievable measurement accuracies.

4. Part of the simulations used the so-called standard initial data (SID), i.e., those
corresponding to particle motion along a nearby circular orbit, or, in case (iii), an elliptic
one with the same eccentricity.

Typical families of trajectories for the case (i) with SID are shown in Fig.1 forH = 1500
km. As expected, the paths are approximately U-shaped and the travel times are about
105 s for initial separation x0 � 18 m and depend on H and initial particle position. The
U-shaped paths exist in a narrow range of "impact parameters" y0 connected with the
natural length scale along the y axis, the separation � between the libration points L1

and L2 (unstable equilibrium points situated "over" and "under" the shepherd):

jy0j � � � 2a[G(M +m)=(3GME)]
1=3: (3)

The trajectories are slightly asymmetric: the lower half is nearly straight while the
upper one contains a signi�cant sinusoidal component with the shepherd's orbital period
and the amplitudes asin depending on H and the initial data. Thus, for H = 1500 km,
x0 = 18 m, y0 = �25 cm the amplitude asin is about 2 mm. The x0 and y0 dependence of
asin shows that the origin of the oscillatory component can be connected with the nature
of SID as "switching on" the shepherd-particle interaction at the starting position. Such
a "cuto�" should result in a path di�erent from a perfect horseshoe orbit near its turning
point.

Simulations with di�erent initial velocities vx0 con�rm this conclusion: for vx0 faintly
di�erent from SID the value asin varies. The oscillations can occur at one or both branches
of the trajectory; for vx0 smaller than at SID they exist only at the lower branch. Larger
deections from SID lead to larger asin; for suÆciently large jvx0j the trajectories contain
loops.

The initial velocity range providing a suÆciently long particle travel within the capsule,
is rather narrow and depends on H and y0. In particular, for H = 1500 km and y0 = �25
cm the allowed initial velocity values are

vy0 < 0:025 cm/s, -0.0425 cm/s < vx0 < �0:028 cm/s.
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The trajectories proved to be stable under variations of the initial position (x0; y0).
5. Trajectory dependences on the values of G (the product GME, known with a good

accuracy, remaining invariable), the 5th force parameter � for � of the order of meters,
and possible EP violation (�) have been studied. As the variations Æx(t) turned out to
be signi�cantly greater than Æy(t), we speak only of Æx. The main results are:

(a) Æx(ÆG) and Æx(Æ�) grow with growing H: they are approximately doubled when
H = 1500 km is changed for H = 3000 km.

(b) y0-dependence: Æx(ÆG) and Æx(Æ�) are the greatest for y0 � �(1=3)�(� �18 cm
for H = 3000 km).

(c) For U-shaped trajectories Æx(ÆG) is the greatest near the turning point.
(d) For looped trajectories the maximum values of Æx(ÆG) are about an order of

magnitude greater and those of Æx(Æ�) are nearly tripled as compared with the U-shaped
paths; the dependence Æx(�) remains practically the same. Thus in general the looped
trajectories are more promising from the experimental viewpoint.

(e) Numerically, the maximum variations Æx are:
� 10�3 cm for ÆG=G � 10�6,
� 5 � 10�3 cm for Æ� � 10�5 (� � 1 m),
� 2 � 10�3 cm for � � 10�14.
These estimates con�rm the viability of the proposed experiment.
(f) The variations Æx behave both qualitatively and quantitatively di�erent at di�erent

parts of the trajectories under variations of G;� and �, allowing one to hope that these
e�ects can be separated in an actual experiment.

6. It has been found that the quadrupole component of the Earth's potential causes
a common displacement of the trajectories within about 12 cm (for y0 = �25 cm and
H = 1500 km) while all the e�ects connected with G;� and � variations remain practically
the same as those with the purely spherical potential.

7. The above basic features of particle motion are preserved when the shepherd moves
along elliptic orbits with small eccentricities e but some new features appear.

With nonzero e the sinusoidal component of particle trajectories becomes unavoidable
and asin grows with growing e; when e > 0:01, loops inevitably appear. As before, asin
grows when vx0 deects from SID: loops either appear or increase in number.

Unlike the circular orbit case, the loops become tilted and (of possible interest for an
actual experiment) increased vx0 lead to trajectory squeezing in the y direction, providing
its con�nement inside the capsule and creating a hope to use orbits with high eccentrici-
ties. However, simultaneously the turning points of the trajectories become remoter from
the shepherd. The sensitivity of trajectories under gravitational interaction parameter
variations are practically the same as that for circular orbits of the shepherd.

8. Among the possible sources of error, we examined shepherd nonsphericity and inho-
mogeneity by using multipole expansions of its gravitational �eld. We concluded that for
a measurement of G up to 1 ppm the shepherd nonsphericity ÆR0=R0 (R0 being its radius)
should not exceed 80 ppm, or about 1:6 � 10�3 cm. Large-scale density inhomogeneities
(of the order of R0) must be within 1:5 � 10�3 and small-scale ones (smaller that R0=10)
within 0.07. All these requirements are easily met by modern technology.

9. Particle trajectory measurements are carried out with respect to capsule walls
where the instruments are placed. The capsule and other bodies are sources of many
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sorts of noise, including fundamentally unavoidable, like thermal ones, which thus restrict
the measurement accuracy. We considered the following basic sources of thermal noise:

(a) radial oscillations of the shepherd's surface;
(b) longitudinal oscillations of the capsule;
(c) transversal oscillations of the capsule.
Spectral analysis of thermal noises with the aid of the uctuation-dissipation theorem

[8] has shown that the maximum noise-induced measurement error does not exceed 2:5 �
10�12 cm, much smaller than the expected measurement error.

10. The gravitational constant measurement procedure was modelled for U-shaped
trajectories by three methods of G determination with the aid of Eqs.(1, 2): (i) the
di�erential method, directly using the equations, (ii) the two-point method, employing
their �rst integral, and (iii) the integral method, comparing an empirical trajectory with
a calculated one and �tting them by varying G.

The �rst method has the advantage of measuring G at any small part of the trajectory,
irrespective of the initial data, to obtain a large set of independent estimates and to use
averaging methods to improve their accuracy. Its shortages are connected with relatively
low accuracies with which accelerations and velocities can be determined. Thus, if lengths
are measured up to 10�6 cm, the error is ÆG=G � 3 � 10�5.

11. The two-point method employs the �rst integral of Eqs.(1, 2)

_x2 + _y2 �
2G

s
(M +m)� 3!2y2 +

!2

a
y(2y2 � 3x2) = const: (4)

The constant G is estimated by two points with known coordinate and velocity values, for
instance, the starting and turning points. In the latter the velocity v and the coordinate
y are zero, thus removing two sources of error.

An analysis shows that G is best of all found from a set of independent estimates in
the vicinity of the turning point. The achievable accuracy at the best trajectories (those
with the turning point at 1.55-2.35 m from the shepherd) is to ÆG=G � 4 � 10�6 if lenghts
are measured up to Æl � 10�6 cm.

12. In the integral method, the most powerful one, G is evaluated from the minimum
of the functional

S(G) =
nX

k=1

[(xek � xk)
2 + (yek � yk)

2] (5)

measuring a \distance" between the two trajectories: the calculated one, fx(t); y(t)g,
with a prescribed value of G taken for true, and an "empirical" one, fxe(t); ye(t)g, with
a Gaussian noise corresponding to the measurement error Æl inserted at all \observation"
points separated by equal time intervals �t. This enabled us to estimate the bias (6�10�9)
and random (4 � 10�8) errors ÆG=G (at best) for Æl = 10�6 cm.

At the present stage of the study the achievable G determination accuracy by the
integral method can be estimated as ÆG=G � 10�7 for Æl � 10�6 cm and ÆG=G � 10�6

for Æl � 10�4 cm.
The latter estimate is of particular signi�cance due to the orbit uncertainty e�ect (see

Table 1): evidently one can measure G within 10�6 by tracking either small segments of
particle trajectories for times � 1 hour with Æl � 10�6 cm, or larger segments for times
� 10 hours with Æl � 10�4 cm.
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Both the two-point and integral methods admit improvements of the experimental
data processing algorithms. In particular, in the integral method the bias error can be in
principle entirely eliminated.

A general conclusion is that the SEE experiment, if realized, can improve our present
knowledge of G;� (for certain �) and � by at least two orders of magnitude.

More details are presented in a series of papers to appear in Izmeritelnaya Tekhnika
(Russia) [9]. An alternative class of particle trajectories (elliptic and hyperbolic ones near
the libration points over and under the shepherd) is analyzed in Ref.[10] (see also preprint
CBPF-NF-022/93).
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