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Abstract

We analyze the chiral Schwinger model in non-trivial topological
sectors, performing its complete bosonization. In order to do this, we
propose a prescription for evaluating the fermion determinant in the
presence of the zero modes, valid for non-hermitian Dirac operators,
in general. By taking fermionic external sources into account in every
step of the calculation, we discover a phase ambiguity which affects
the effective action and can be used to render the result invariant with
respect to particular choices of the topologically-charged background
configuration. Consistency requirements on the bosonization proce-
dure fix the phase ambiguity and determine a unique value for the
Jackiw—Rajaraman regularization parameter in all sectors with non-
zero topological charge. We thus find that non-trivial sectors have a
null contribution to all fermionic correlation functions. Our method is

also checked against the analogous results for the Schwinger model.
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1 Imtroduction

Topologically-charged gauge fields have been considered of physical relevance
since the 70’s, in the pioneer works of Rothe and Schroer [1], Crewther [2],
Nielsen and Schroer (3], Rothe and Swieca {4)], Hortagsu, Rothe and Schroer
[5] and others [6]. Recently, they arose again in quite different contexts,
such as string compactification [7], consistency of two-dimensional SU(2)
Wey! fermions [8), two-dimensional gauge theories [9,10,11], high-T.. super-
conductivity [12] and QCD strings [13]. Some very interesting phenomena
have appeared in these investigations, for instance, correlation functions
which would be null in topologically trivial sectors [7,9] or the elimination
of instanton contributions by a dynamically generated Chern—Simons term
in 2+1 dimensions [12].

In previous articles [14,15], it has been noted that, in topologically non-
trivial sectors, the external fermionic sources play a very important role:
they regularize the zero-mode dependence of the generating functional, pro-
viding the natural appearance of det’ D (the product of non-zero eigenvalues
of the covariant Dirac operator D) instead of det D (the true fermionic de-
terminant, which is of course zero, due to the inclusion of the zero modes).

This fact led us to a different definition of the jacobian for chiral rotations
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of the fermionic variables in the path integral, namely,

Ve = s Nal ™, M

with D, = %" De®". The functional A[a] is a contribution of the fermionic
sources to the jacobian, that exactly cancels the explicit zero-mode depen-
dence of the ratio between det’ D and det’ D,. When D is a normal operator
(that is, DDt = D'D) or a hermitian one, one can compute det’ D using
the zeta-function regularization, a.s.is done, for example, in Refs. [16,17).
However, problems concerning the stability of the null subspace of D pre-
clude the application of this method to non-normal operators, and that is
precisely the case of a model of great interest: the chira.l Schwinger model
(CSM) (18].

Therefore, it is the purpose of this paper to compute the contribution of
all topologically non-trivial sectors to the CSM, taking into account the full
dependence of the generating functional on the sources. We will base our
discussion on the method of boscnization in the presence of non-trivial field
configurations as developed by Bardacki and Crescimanno 7] and Manias,
Naén and Trobo [9] for the case of the Schwinger model: we assume that a

field configuration with topological charge N can always be decomposed in
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the following way:

Ay = ALN) t+a,, | (2}

where ALN) is a fixed configuration of charge N and a, carries zero topo-
logical charge, so that, within the N-charge sector, a field change amounts
to a change in a, only. This implies that the functional measure DA, is re-
stricted to Da,,, where the path integral is now to be computéd under trivial
boundary conditions, which allows us to bosonize the theory completely. In
the course of our analysis, we are confronted with the fact that the effective
action has an ambiguity due to the process of orthonormalization of the
zero modes after chiral rotations. This ambiguity can be fixed with the aid
of two criteria: (1) invariance of the generating functional with respect to
particular choices of ALN) and (2) the requirement that the theory is to be
bosonized without leaving the topological sector of charge N. As a conse-
quence, the Jackiw-Rajaraman regularization parameter er(N') (in princi-
ple different for each sector) is shown to be equal to -1 for all N # 0, only
ar(0) remaining arbitrary. Finally, the computation of arbitrary fermionic
correlation functions gives a null contribution from the non-trivial sectors,
thus showing that the model can be completely solved by considering only

topologically trivial gauge fields.
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Qur analysis demanded a new definition of det’ D, a generalization of
one previously proposed for det D [19]). It reduces quite obviously to the
natural one for hermitian singular operators. We motivate it by working
out in some detail the hermitian case of the Schwinger model.

The article is organized as follows. In Section 2 we consider the defini-
tion of det’ D for the hermitian case and apply it to the Schwinger model. In
Section 3 we give an explicit description of the zero modes and compute the
jacobian of chiral rotations for the CSM. Section 4 contains the application
of our definition of det’ D to the non-normal case, where we compute the
full generating functional with the solution of the phase ambiguity. The cor-
relation functions of fermionic fields and currents are the subject of Section

5 and in Section 6 we present our conclusions.

2 Fermion determinant and generating functional

in the Schwinger model

Before we concentrate on our main goal, let us first consider the hermitian
case of the Schwinger model, defined (in two-dimensional FEuclidean space-

time) by the lagrangian density [20]

1 —
£ = 3FuwFu +$D4, (3)
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where D = i@ te A. The gauge field A, is assumed to satisfy a vortex
quantization condition [21,22,23],
_ <R f Aydz, = N, 4)
2r Jo
where N is an integer and I is a closed loop surrounding the vortex. We
can decompose A, as
A, =AM 1, | " (5)
with ALN) satisfying (4) and a, sucﬁ that
- ;—2 fE a,.dz, = 0. (6)

We say that the topological charge of ALN) is N and that of a, is zero. We

choose A,(,.N) to be of the form

erAM(z) = -8, 1(2), @

with the scalar field f satisfying the boundary condition

|2z | 0

f(#) — —-Nllz]. ®
We can rewrite @, in terms of scalar fields as well,
€Rdy, = Upup — 5395’ 9

where p and ¢ satisfy trivial boundary conditions such as

lz]—ee 1

) = o (10)
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with vy appropriately chosen so that we can perform by parts integrations
involving f(z).

It is well known that D is a singular operator with | N| zero modes [1]. We
can corﬁpute the product of its non-zero eigenvalues using the prescription

[24]

., det(D + €1)
! — e —
det’'D = Elm:h N (11)
This gives formally the determinant of D + Py, with Py being the projector

over ker D. Considering a family of operators {D,} given by
=ig+edM +ag, 0<agl, (12)

with eigenvalue equation

Doty = Anpns (13)
we can use {11} and det = exp Tr In to establish a differential equation
obeyed by D,, as in Ref. [19],

4 4et'D, = i JeDot )

dD
-1 o
da Jim —5 T‘[(D +el) ]

» o (14)

with AQY) and a, given by (7) and (9). The inverse operator (Dq + €1)™?

exists and can be written in terms of the eigenfunctions of D,

(D + 61)-1 - Z ‘P:(z)‘P 1(9‘) + = %% (3)9’3 f(y)
o - A.n +€
ASH0 € =1

Se{=,y) + %Pﬁ'(z,y), (15)
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so that

—det'D, = det'D, Tr [S" 4Dy

do :
et!Do,+cl T&'[P&'dg:'] . (16)

e-o eVI+1

There are several ways to see that the second term on the rhs vanishes. For

instance,

a—
da

right-handed ones and vice-versa; thus,

LS LR ACIORD )

is in fact the scalar product between a left and a right-handed spinor (re-
member that zero modes in the Schwinger model have a definite chirality

[1,7,9]). We have then

4 1ndet'Dy = Tr [s"dD"' (18)
with
Sa(x: y) z vﬂ(z?\ﬁat(y) ] (19)
An#O
satisfying
DaS{z,y) = b(z - ) - P5'(z,y) = §%(%,9) Do (20)

Although D, is singular it has a Green’s function that can be computed

exactly in two dimensions. It does not have a spectral decomposition in
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terms of the eigenfunctions of D, and thus cannot be viewed as a distribution
over R? (the compactification of R?, which must have been made in order
to define a discrete set of eigenvalues for D,) [1]. However, it can be used

to construct a function that satisfies (20):

(@) = G*(ew)- [ & 6@ )R ()
—ffpm@Jmﬂan | (21)
where
DaG(z,y) = b(z,y). (22)

Eq. (18) is then rewritten as

db,

i-lndet;"l)‘.,l = TI[G"

. ] ﬁkg

dD,

- Tr [P"‘G“ (23)
The ultraviolet singularities in this expression are all contained in the first
term of the rhs. We can regularize them by means of point splitting [25,19]

to obtain
ﬂdDﬂ'
™ (o ]
: 8,9, — 8.5,
= —%E-r- /d’z [a“ (a...(N)Jm, - _&___a_ﬂ_) “v]
: ; 5 8,-0 5,,
_;—w jdgz [A&N) (a+(N)5,,., —ia_{N)ey — _u___D___g__) ﬂv]

—2ala,} - T[A‘S‘N), 6. (24)
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The parameters a;,(N) and a_(N) in (24) are reminiscent of the regu-
larization freedom of the theory. The values that preserve gauge invariance
at the guantum level are a4 (N} = 1and a_(N} = 0, for all N. The
unconvéntional parameter a_ is a consequence of allowing different inter-
actions between the gauge field and the left and right-handed fermions (cf.
eq. (11) of Ref. [19]) and appears here only because we have “embedded”
the Schwinger model in the generalized Schwinger model [19]. We shall see

later how to determine these parameters. In order to compute the other two

terms in (23), let us remark that P can be written as

IN|
Pi(z,y) = Ye(@)ed i)

i=1

- Tkt ) @eeo)

i=1 (2) ® (o 1)
™| .
= Pi Z (pi.(x)‘p::'. (y)! (25)

with ¢ = ¢t.(3), for N > 0, and ¢, = ¢5,(]), for N < 0, being the

orthonormal set of zero modes of D,. Then we write

1&[@@:%] = o [ & dyir (65 9)Pi]

X au(2) D @3 (2P, (v)- (26)
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Using (see [19])
G*(z,y) = (eh-r @)-h+ W) p, ¢ ¢~ (- m)=h-()) P_) Gr(z - y), (27)
with
hi(z) = f(z) + a(¢(2) £ ip(z)) (28)
and i@Gr(z —y) = §(z—y), it can be shown, by making use of the equations
of motion for the D, zero modes,

[8: — 8: (f + a(¢ ~ ip))] ‘PI.-‘ =0 (29)

(84 8:(f + a(é + ip))] w5, = 0, (30)

where 3, = 1(31 - s&u) and 8z = 1(81 + idp), that

[G“P“—] E‘Pn.t(‘P $75)95, ) (31)

where { ) denotes integration over spacetime variables. Because of the prop-

erty
«pedDa] _ (1, [ pagadDa])"
'n[c pee _{'I‘r[PoG" da]} , (32)
we come, after integrating over a, to

det’ D
det’ DV}

= ~Tlou]-T{A{™ 0] [det ((@&e_zhs‘n“ﬂj))]-l . (33)

The determinant of the zero modes in the above equation comes from the
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results of Ref. [15], from which we can also write the jacobian of the trans-

formations
b o= ety (34)
E = ;F’e—ip-}m’ (35)
as
det' D

JIAM, a,] Tt Doy det ((503.-0-2“_%;))

= e—l"[n,.]—F[AL"),a,,], (36)

which checks with that obtained by Manias, Naén and Trobo [9] for a4 (N) =
1, a_(N) = 0. The determinant of zero modes, which appears in the first
line of (36), is a consequence of working with the external sources present
in every step of the computation,

The fact that the gauge configurations A, can be classified according to

their topological charge enables us to write

Z= ZZN, (37)
N

such that, for each Zy, the functional integration over A, is restricted over

fields of charge N. After making the transformations (34)-(35), we have

Zu,m7 = 3 f Da,, e SexlAl" o dHIudu)+ T SM)
N
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INl
xdet' D™ Tl ), (38)

with 7f = e~*+$%y 7 = Felrt¥® and
— 1 —
SealASY), 4] = 3{FuFu) + Ta,] + TIALY, 0. (39)

It is convenient to express the generating functional explicitly in terms

of the original (non-orthonormal) set of zero modes of D™ [7.9],

21 N>0
8V = I © . (40)

#1(9) N<0

To do this, we introduce a rotation matrix between the two sets of functions,

) . )
= %:b.,éo:_ , (41)
which yields
INI N ot IN| t
Il WA o) = Ldet P TLTal )@ ). (42)
i=1 i=1

Thus the condition ((p(N) (N)) = §;; implies
2 _ AN
|det b2 = [det ((@0‘_ 8 ))] . (43)
Consequently,

2 = Y f Da,, e=SerlAL" ault Guduh+ @ S get/ D
N

e (37'64)]” Therogra' . w0

i=1
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With (44) we can check the invariance of the generating functional with
respect to the particular choice of the field A,(,N). This can be expressed by

the equation

Z Jua 1, 45
We comment on two details of the computation. First, we find 3 f‘zz) det’ DN}
using (33):
det!' DN f 4+ 6f) = det’D[6f, AN = -8, f,a, = 8,6

—  det’ D) o-Tl-8u61]-T(-3,1.-8,61]

X exp [E f da (p§ *251'75%.}] (46)
where ¢, are the zero modes of DWW Nf + aéf]. We can express them in

terms of the zero modes of DV} and prove that
> (w8 28fvsp8) = — trln ((‘Pm "’”"”‘ﬂm)) (47)
In the limit 6§ f — 0, we obtain

——det’ D) = det'DW) [— (e:(N)+1)Of(z)+ 2 tr (P( )(z z)‘rs)]

&f ( )
(48)
Second, we consider
8 15 é
7ok (“’ #7)) = 7y 4
'5f( y exp trin A = det A tr (A_IJ;;::)) . {49)
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Thus, we have

6 _ (V)
Ty det A= 2det A (P (z,2)s) (50)

(N)

as can be easily seen, by expressing @5‘?) in terms of ¢, ’. After some

calculation we are then able to show that

5= )Z[Jm'?,-] Z {jpp‘l)(ﬁ—a [ -§"+(J"A”}Z(m[q _]]}

—a_(N) j DpDg Op e~ Ser+lud 2Ny 7 (51)

zM n, 7] being the fermion part of the generating functional. The first term
F

on the rhs vanishes, as it is the functional integral of a functional derivative

(in fact, it represents the quantum equations of motion for ¢). Then, the

only way to cancel the second term and obtain invariance is to set
a_(N)=0, for all N # 0. (52)

This is to be seen as a consistency requirement on the theory, at a mathe-
matical level. Simultaneously, the condition given in {52) is part of the re-
quirement of gauge invariance. Furthermore, the computation of the Green’s
functions in non-trivial sectors [7] shows that, in order to diagonalize S.q
without allowing ¢ and p to carry topological charge, it is also necessary
that

ai (N)=1, forall N #0. (53)
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Tt then appears that there is a match, in non-trivial sectors, between
mathematical consistency and gauge invariance. In the trivial sector, ay
remains to be fixed solely on the basis of gauge invariance. However, in
the CSM, as no such criterion exists, we expect eq. (45) to really give extra
information.

As a by-product of our analysis, we get a functional differential equation

for det’ DY), Using (48) and (50), we obtain

é ipny _ 1 é ( (N () )
57() Indet' DV = o (e4x(NY+1)Of(=) + 57 (@) Indet { (&5, ®5,°) ),
(54)
or, integrating,
det’ DIV} = lo+(NHUON/A7 goy (w,‘,m*@f,v) ) . (55)
i ¢l

The result above is important for the complete analysis of the Green’s

functions of the CSM, which will be the object of Section 5.

3 Zero modes in the chiral Schwinger model

We now pass to the chiral Schwinger model, i.e., two-dimensional electro-
dynamics with chiral coupling to fermions, whose covariant Dirac operator
is
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Using the gauge field A, as in the preceding section, we can now solve the
zero-mode problem for D,

D&y =0, (57)
or, explicitly, in terms of holomorphic coordinates,

0 _az QR
2 =0, . (58)
85 - l-e‘RA, 0 @L
where A = 1(A; + iAg). Substituting for all scalar fields, this is equivalent

to the set of equations
(3; - ai(f + ¢ + ip)) QR = 0. (60)

Although there are no normalizable solution for (59), there are precisely N

for (60), if N > 0, which are given by
@o; = 2 lel ot ((l]), i=1,...,N. (61)

If N < 0, however, there are no normalizable solutions at all for (57). On the
other hand, the contrary occurs for the zero-mode equation for the adjoint

operator,

Dixo =0, (62)
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that is, no normalizable solutions exist for N > 0 and, if N < 0, the |N]|

solutions are
xo; = B lem{+=in) (‘1’) i=1,...,|N] (63)

The zero modes of D! are as necessary as those of D, as we can see by

considering the generating functional for the present model,
Z[Juym 7 = f DA,DIDY e~ A PuFur)-WDIHIAN T, (64)

with { } again denoting integration. As D is a non-normal operator, it is
convenient to use in each topological sector, as was done by Fujikawa [26],
the two sets of orthonormal functions defined by the eigenfunctions of the

laplacian operators related to D,

D'De, = Mg, D1D‘P06 =0, (65)
DDY¢, = A, DDy, = 0. (66)

The sets {(,} and {¢,} are orthonormal, as the laplacians DD and DD!

are hermitian. Moreover,

D‘Pn = ’\n¢m (67)

Dt¢n = Ann, (68)
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and ker D'D = ker D, ker DD = ker Dt. If we decompose ¥ and 3 with

respect to these bases, we have, for N > 0,

-
¥ = Y an@n+ ) 60ip0; (69)
An#0 i=1
E = Zan‘ﬂ; (70)
and, for ¥ < 0,
¥ = Y aupn | (71)
B IN|
¥ o= 3 G+ Y doidh; (72)
An#0 i=1

The functional fermionic measure may then be written as

il

DYDY [ d¥(2)dy(z)

detpn(2)]* det]gh ()]~
| #~N) 8(N)
X Hﬁnda’n (H daﬂt) (H da'ﬂ‘) ’ (73)

where # is the Heaviside function. The determinants in the formula above
do not appear in the hermitian case, because the transformations (69)-(72)
are unitary there (in the present case, they are biunitary) and they are
responsible for the phase of det’ D. With the aid of the bases (65)-(66), we

can construct a distribution S(z,y) as

1
Say)= Y, LDEW, (74)
Anft0 (i
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which satisfies, for N > 0,
DS(z,y)=6(z~y),  S(z,9)D =8z —-y) - Polz,y), (75)
while, for ¥ < 0,

DS(z,y) = §(z — y) - Po(z,¥), S(z,y)D = 6(z — y), (76)

with the two projectors on zero modes given by

[l
Y eoi(=)eli(v) (77)
=1
|N

Po(z,y) = Y doilz)eli(w). (78)

i=1

Po(z,v)

As defined by (74), §(z,y) is the best object that we have at our disposal
to try to decouple the sources from the fermion fields, since, as D is non-
invertible, we have no Green’s function with a spectral decomposition such

as that of (74). Performing the translations

Wz) = W@+ [dy S(@9n0) (19)

1l

Wa) = F@)+ [Pyawseo), (80)

we obtain

Z[‘Im’?”_ﬂ = E'/depaﬂq{’ e-HFJWFJW)-(EDNC')-HJ,.A,_.)-{-@S,,)
N

x X N)EPow)+0(~N)F Pon) (81)
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Using now the decompositions (69)-(72) and the expression for the measure

(73), we see that

Z[J 17 = z/ba”e‘}(anan)'HJnAn)"‘ﬁsﬂ}det’D
N

IN| 8(N) riw 8(-N)
X H(ﬁ%.‘)(-l)”] [H(ﬁuﬂ)] ,  (82)

=1 =1

with (see [23,26])

det’ D = detfpa(z)]™? ( H /\,.,) det[¢f (2)] . (83)

An#0

We can bosonize the theory within each sector, by performing gauge trans-

formations of the fermions according to

o= Py (84)

¥ = P WHIr, (85)
with ¢ and p defined in (9). As is well known, the fact that these transfor-
mations involve 45 implies that a jacobian arises; its computation gives the
effective action for the bosonized theory. The rest of this section is devoted
to describing the procedure for obtaining this jacobian. It is to be noted that
transformations (84)-(85) take D into D¥), which has the same number of
zero modes as I}, because both ¢ and p obey trivial boundary conditions.

This is necessary in order to give meaning to the ratio of their determinants

which appears below.
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Returning to eq. (64), and considering, for brevity, only the fermion
part of the generating functional in the sector of charge N, we perform

transformations (84)-(85) and obtain

JAM, 0,12 (n, 7]
= JIA,q,] [ DTDwexp [-EDWIY) + ) + ()], (86)
with J being the jacobian, #f = e~($+i0)P-p 7 = Fel6+ir)Py 5pd
DY) —  —($+ie)P- p(¢+ie) P
= ig+epd®P,. (87)

Therefore,

=1

t=1

Ny o(N) IN #-N}
2801, 7] = T der D) [Hm&i‘”x—l)"] [H‘*bc"’f’ﬂ] ,
(33)

(V)

where g7, ,g{\r) are the zero modes of DI¥) and DW )t, respectively, and

SV satisfies
DMEWYz ) = d(z—y),  S™(z,5)D™ = §(z—y)— PN (z,y), (89)

for N > 0 and the analogous equations for N < 0. It can be proven that
{7 5¥)y) can be replaced by (7Sn) in (88) in virtue of the multiplication

of the exponential by the products of terms involving the sources [15]. To
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compare (838) with the fermion part of (81) it is necessary to express the
zero modes of D in terms of those of D'V), Thus, given the set {:p((,llv)} of

zero modes of DI¥), we obtain the corresponding set for D as

o; = e#HIP 37 B (90)
i

The matrix B is introduced to ensure the orthonormality of the set {(q;},
when expressed in terms of the cp(N) [14,15}. Its determinant is fixed, up to
a phase, by

(0,1 0;) = 6ij, (91)

which implies
|det BJ? = [det (( (mt Ww(’“))] . (92)

However, we need det B (not just its modulus squared) for the generating

functional because

V] IN
[Tmeo) = H(EB.,cffsoo’,"b) —detsmws’.‘”) (93)
=1 =1 i=1

A similar computation can be made for the zero modes of Df, giving

IN| Nl
[T(¢oln) = detC* [J(45 o), (94)
i=1 =1

with

|detC |2 = [det ((¢§,{.""e-=¢f’+¢$’))]—l; (95)
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With this we write our jacobian as
det'D [ t -1/2°)
N - £ (N 2462, (N} .
JAM,a,] = et D [e T+ det ((‘1"0.- e* g, )) ]
. -1/2]%(-N)
X [e""—'det (<¢,g{,"l*e-w°-¢§,f>>) ] (96)

The phases v4 and y— of the determinants of the orthonormalization ma-
trices are in principle arbitrary but we shall see in the following section how

this arbitrariness is suitably eliminated.

4 Fermion determinant and phase ambiguities

In the case of the CSM, the analog to (14),

d ., vn _ 1. det(Da+el) _1dD,
T-det'Dy = lim —— Te [(Da + ¢€l) I] , (97)
where now
D,=id+erdMP, 4+ aepgPy, 0<ag<l, (98)

simply does not work, because in the present case we do not have a well-
defined distribution (D, + €1)~! with a spectral decomposition similar to
(15). The reason for this lies in the zero-eigenvalue sector of the spectrum
of D4 as the number of zero modes of D, and D}, is different, we cannot

create a “scalar” from g§; and ¢3j* that would carry the 1/¢ singularity of
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(Dqs + €1)~1. We could also say, in a more physical manner, that putting
a mass in the Dirac operator is equivalent to not treating the left-handed
fermions as purely free any longer, because a mass term mixes them with
the right-handed ones. As the fermions that really matter to us are the
right-handed ones (¥r = ¥s¥'R), we should not use this trick to deal with
non-singular operators here.

However, even though (D;,. + €1)7? is not well defined, the same is not

true for §%, given by

z)got
Sa(z’y)= Z: ‘P::( 1¢n (y)’ (99)
An#0 n

with §% constructed from the laplacians D}, D, and D,D} in the same way

as in (74). So we can still define

-‘-El-ln det'Dy = Tr [S"%] . (100)
This is a completely well-defined expression {as long as we take care, just as
in the case of the Schwinger model, of the ultraviolet divergences), a very
natural one, as it has the non-singular situation as an obvious limit (in which
case 5% is a true inverse of D,) and contains the hermitian case, where all

can be derived from a “reasonable” definition of det’ D, eq. (11).

The equations that S* has to satisfy are now

N>0;
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D,S*(z,y)=b(z ~y), - 5%z,9)Da=b(z —y) - F5(2,9),
(101)
N<O:

Dasa(ssl y) = 6(3 - y) - -ﬁg(zs y)s Sa(z$y)Da = 6(3 - 9)'

(102)
This implies
$°z,9) = G(ay) - () [ 2 PS(a, G°(x3)
~6(~N) [ &2 G*(2,2)P5 (=), (103)

with G*(z,y) being the Green’s function (without spectral decomposition)
given by

G (z,y) = (MO P+ P )Cr(z - y), (104)
and
hi(z) = f(2) + o($(2) + ip(z)). (105)

Using the equations of motion for the zero modes of D,, ¢f, = ¢f (cl,), and

for those of D}, ¢ .= ¢F (2)’

[0r = 8:(f + a(d+ip))]¥T =0, (106)

[0: + 8: (f + a(é - ip))) 47 = 0, (107)
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and the point-splitting method to regularize ultraviolet divergences, we find

«@Da] _ _
'I‘.r[S K] = ~2al[a,] - T[4, a,]
[N
+8(N) gws..*w + ip)d.)
IN|
—8(—N) 3 (46 (6 + in)e8.), (108)

=1

where (see again [19])
Ila,] = ;ii jdzz ay [GR(N)J,W - (0 + "gp)%(all + igv)] a, (109}
and

— ez . =1 = .

I‘{ALN), ay] = Zﬁ' /dza: Aium [“R(N)('s;w —igu) = (0u+ 'aﬂ)a(av + ‘8v)] a,,
(110}

ap(N) being the arbitrary parameter reflecting regularization freedom. In-

tegrating over o we find

dd?t;?N y = e—I‘[a,.]-F[AE.N).a,.]
et

]
X exp 9(N ) / da) (¢5N o+ m)%.)]

=1
i

X exp —e( N) / daz 1(¢+1p)¢0.)]. (111)

Expressing §; in terms of QO(N) and ¢g. in terms of ¢D{,v),

I¥]
¢, = e#Pe 3 BN (112)
=1
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(G—is)P IN) L _
o = —oe—w - .
¢0§ = € §D¢’¢oj , (113)
we get
det’ D —Tla]—FAM t 8(N)/2
D™ - € T{a,]-TlAL" a4} [det ((,pg\’) e3P+ (P(()?)))]

N

[ 1 IN|
xexp |ib(N) [ do ):<sosi*p¢s..>]-

i=1

i 1 IVl :
X exp | —if(—N) ]0 da Z(¢a’,.*p¢a:>] : (114)
| i=1

The main new feature of (114) is the presence of the phases involving traces
over the null subspaces of D, and D} of the longitudinal part of a,, the field
p. These terms are cancelled in the Schwinger model due to the occurrence

of only Re [’I‘r (G“P,f‘ %)] in the expression of the fermion determinant.

Considering now eq. (96) for the jacobian, we obtain

JAM g, = e Tloul-TUL 0

L
X exp {iﬂ(N ) ['r+ + fo da Z(saﬁ':-‘pwﬁ‘.-)] }

=1

1 W
 exp {w(—N) [ - [ da nglpesa‘.-)] } ,

=1

(115)
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and, defining S.q as
1
= 3FuFu) —In J[AD), a,], | (116)
we see that the generating functional is given by

Znd = Y f Da, e~ SerlAi ald+IuAu+ (7 S0') gors D)
N

- —1/2 IN] 6(N}
x [aer (co"a) *“nmaf>>(-nﬂ]

t==1

, 14
x {det ((xm Xo; ) ) l'[(x{m ]

=1

) f Day, e Senl4D et} 7}y g, (117)
N

Imposing now invariance under change of the representative of the gauge

field homotopy class, §Z[J,,n,7]/6f(z) = 0, and noting that

) [ —_ f __].'.._ xr
6f(z)det DW} = det'DW™) [4« (ar(N) + 1) Of(z)
+ 8(N) tr (PN (z,2)) - 8(-N) tz (P{"(z,2))]
(118)
and
6 Mg MM (P .
6f( ) ((Q Q 0; )) - det ((QO.' QO_,' )) t (PO ( L ))’

(119)
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1/2

; f':x) det ((X((J.' Xo, )) = det ((X(N) x(()iv))) -1/2 tr ('P((,N)(z, z)),

(120)
we obtain
TG )Z[J,u,ﬂs 7
2 = 54:2;-) oSl a1 +0) 2l 5
3 /m ge~ Sl Al HIuA) 7MY,
IN|
X [sﬁ(N ) (w(z) 3 f(z)) (7"' +f de Z(‘P"- P )
IN | a
+i8(-N) (5;3) 51‘?3)) ( [1 da ;(% PG} ) - 4_?39{3):! } .
(121)

To get a null result to (121), we fix the phases 44 and v.. by choosing them

to be
1 WM aR v
1 = = [ da Y (o5 005) + (8- OP) - 5 {9+ HOA(122)
i=1

IN|
o o &R
1o = [ daT (6810050 + 2248 - 1)0p) - Z=($+ )OA), (123)
i=1
where the last term in both of the above equations is annihilated by 5695
% and represents a residual phase ambiguity, parametrized by ». Tt is

used in the next section to diagonalize the effective action without allowing
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¢ and p to carry topological charge. We see then that invariance of the
generating functional is achieved only by carefully adjusting the phases of
the orthonormal sets of zero modes. The fermionic sources aré responsible
for uncovering this phase ambiguity.

Finally, using (119) and (120), we can compute explicitly det’ D(¥),

det' DV =  lar(M+1}{s01)/8x

ldet (((Q(N )f (N))) 1 2] #(N)

o(-N)
o ()] e

so that we obtain our last expression for the generating functional,

Z{Juy 0] = Z/Dq}]}pe—s‘,,[Aff),a,.]+(J,.A,.)+(E'S(N)n'}
sl ™) " (Mt oo
x | [T ®g, y(-1)Y H(Xo. 7} ,(125)
$=1

with

SenlA,0,]) = Sus = o= (an(N) + 1)(fO1). (126)

Expression (125) will be our starting point for the computation of cor-

relation functions in the CSM in the next section.
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5 Correlation functions in non-trivial sectors of

the chiral Schwinger model

It is not difficult to see that all correlation functions of the kind

B@)T19(z1) - Ben)Tadlzn)), (127)

where T, represents any Dirac matrix or product of them, vanish due to
the impossibility of pairing the adequate number of functional derivatives
of 7 and 7 over the generating functional to produce a non-null result when
7,7 - 0 (we are of course excluding the trivial sector from this analysis).
The correlation functions of bosonic fields are also zero. The only objects

that remain to be considered are

GM(z1,...,28) = (Plzn)(zn-1) - P(21)

1 & ) —
T an) G 2

= 7 [ DpD¢ =Sl a4 T (8 +in(w:)

2[0]
‘fg,n(zl) ‘I’c(:}:)(zl)

X det : : .(—-l)N
2\ (zn) -+ B (zw)

(128)
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and

T(@1,..van) = (Blen)Plenz) - B@1)

= Y e e 2
- ﬁ / DpD e~ Senl AL ul= T ($laidtin(w)
M) - X ()
x det : : (-1)¥.
M an) - X ()

(129)

We see that the only contribution to GV} (E(N)) is from the Nth sector,

N > 0 (N < 0). The determinants of zero modes give

IN|
det(@{)(2;)) = eXoiF=0) H (- %)@ ( ) (a0
iyl i=1
and
IN|
det(" (z;)) = e Zo S0 H(z.—z,)®(o ). (3
igyml =1
Defining
IN]
i(z)=FY 8z ~ 2), (132)
=1

for N > 0 and N < 0, respectively, a final functional integral has to be

computed,

Iijl = f DpDg e~ Saledd, (133)
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where

Seale,6,5] = ﬁ((ﬂ ¢)0 (D - fﬁ(aa(N )+ 1)) (F+4))
— o= (aR(N) + 105} ~ <(n(N) +2 = ¥){(f + $)0p)

+{i(f + ¢ +ip)). (134)

We can diagonalize S.g by changing variables, first from p to o, through

0= p+iP I (f 40 - A (ar), (39)
where ag(N) # 1 and
Are—y)=—5-llo—gl (136)
is the Green's function of 0. The effective action then becomes
Sealovdrd] = ﬁ((i +4)0(0 - E))S +9)
~ (R (N) - 1)<ano> + BENIS +9)
1
GR( W) =1 mz_:llnp, z, (137)
where we have defined
el a - 1)
#0) = 2 |an(w) +1- L= ] (138)
and
Bv) = w (139)

~ 2(ar(N) - 1)/
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The asymptotic behavior of o is
|z} i' _
o= F—a T ) [ar(N)+6 —v]In|z|. (140)
This fixes v to be
v =agr(N)+6, (141)

because we assume that o does not carry topological charge. To decouple ¢

from 7 and f, we use the translation

o= 1+6+ SR RAW, (142)
where
A(psz —y) = 2«#2 (Kolplz ~ yl] +In 1z - 91), (143)

Ky being the zeroth-order modified Bessel function. The effective action is

then rewritten as

S = %cwn(n ~ i)} = g-(aR(N) - 1)(oD0)

N IN]
Eln|z, -z} - Mef; > Ay — ;).

an(N )- 2(ap(N) - 1)?

f,7=1
(144)

From the asymptotic behavior of ¢,

o ;Qeﬂmgj)ﬂ_ 3)(@(1\') +1), (145)
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and the trivial homotopy hypothesis, we extract the condition

ap(N)= -1, forall N #0. . (146)
This then implies
1 W
I=exp 3 E (ln |z; — z;] + 2e4A(u; 2; — :.e,-)) . (147)
f4=1

We remark that in the above expression the summation includes the z; = z;
term; thus, although A(g;0) is a regular function, we find I = 0, showing
that non-trivial sectors decouple from the theory.

Finally, we note that if we take ag(N) = 1 from the start and perform
all computations with that value, it is impossible to diagonalize S.g with a

topologically trivial p field.

6 Conclusions

We have performed a complete analysis of chiral electrodynamics in 2D in
non-trivial topological sectors. We have concluded that, unlike the case
of the Schwinger model [9], where all topological sectors contribute to the
minimal correlation functions (vanishing in the trivial sector}, there is no
effect of non-trivial topology here. The reason for this relies on two aspects

of the theory: the zero-mode structure of chiral gauge theories in 2D, which
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provides a very peculiar form for the generating functional, and the necessary
choice of a regularization (ag = —1}, that provides a crucial sign for the term
¥i; AF(zi—z;) which comes from the diagonalization of the effective action.
This behavior of the CSM is due to the presence of the longitudinal part
p, since it does not decouple for any value of ag(N). Again, this can be
contrasted with the Schwinger model, where, for ag = 1, p disappears from
Seff-

We have also learned that the effective action has a very important
ambiguity in non-trivial sectors, which is decisive for the complete solution
of the theory. The mathematical requirement of invariance of the functional
integral under changes of background was shown to be a highly non-trivial
one, at least when chiral gauge theories are concerned. This requirement and
a consistent procedure of bosonization have allowed us to fix completely the
form of the effective action and thus sclve the theory.

Our analysis has been performed in the so-called “gauge non-invariant
formalism” [27]. It would be interesting to look for the effects, if any, of
a Wess—Zumino term on the longitudinal part and in the fixing of ag(N).
Here also the inclusion of the external sources may be important, as one can
expect from the results of Ref. [28].

Furthermore, one should try to establish whether these properties occur



CBPF-NF-023/92

in the non-abelian case and in higher dimensions (three and four) as well.

Progress in these directions will be reported in the future.
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