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ABSTRACT

First-principles electronic structure calculations were performed for a
FeAtiz embedded cluster, representing an Fe impurity in AL, At the
equilibrium positions of the Al first neighbors around Fe, obtained by total
energy minimization, it was found that the impurity is non-magnetic. This
result is consistent with experimental observations and renders unnecessary

a microscopic description based on spin fluctuatlons.
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The problem of the existence and stabllity of localized magnetic
moments in metals, in spite of the large amount of experimental and

theoretical work, has still many questions left unanswered. Experimental

{1

properties of dilute alloys may be divided Into bulk (macroscopic) and

2}

local probesl On the thecoretical side, a transition metal impurlity in a

s-p host has been described by the "virtual bound state” model of Friedel'®

and Anderson“l. On the other hand, the theory developed by Kx:u‘v:lo‘5

(6)

) {and,

later, Wilson ') to explain the behaviour of the resistivity of dilute
alloys with temperature led te the concept of a Kondo temperature T;, below
which the magnetic moment of the impurity lis screened by correlations with

‘7“‘“R The Kondo

the conduction electrons and thus cannot manifest itself
theory, however, did not explain the T dependence of the resistivity at
T»0; this behaviour was accounted for by the theory of 1local spin

fluctuations(7”(9).

The central concept of spin-fluctuation theory is the
existence of a local moment which fluctuates with a lifetime & , that is
very short for systems that display bulk propertles with no evidence of

magnetism.

Dilute alloys of 3d transition elements in Al may be conslidered as
classical examples of "spin-fluctuating" systems. The low temperature
impurity resistivities of A!M have maximum values for Cr and Mn. This is
opposite to the well established local moment behaviour in Cu and Au hosts,
for which the resistivity is double-peaked along the serles, with a minimum
for Hn(7). As a possible spin-fluctuation system, Fe in Al definitely does
not show the Curie-Weiss behaviour, characteristlic of stable moments, in the

bulk magnetic susceptibility“n); this 1s true alsc in the liquid state, at
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temperatures as high as 109000“1). The variation with temperature of the

thermoelectric power does not show the typical peak of stable magnetic

1), (12)

systems On the side of local experiments, Mdssbauer spectroscopy of

(13)

S'Fe does not show a magnetic splitting , although this 1s not concluslve

evidence of zero moment since no experiments were made in the presence of an

Y ith

external magnetic fleld. The results of recent local measurements '’
perturbed y-ray distribution techniques following heavy-ion reactlons and
recoil lmplantation, which allows probing extremely dilute 1lmpurity systems,
point to non-magnetic behaviour for Fe in Al. If spln fluctuations are
considered, the characteristic temperature derived is >10%.

In spite of the overall evidence of non-magnetic behaviour, recent

first-principles electronic structure calculations performed for

substitutional Fe 1n Al, at the Al lattice interatomic distances, found a

15 6
(15) ll))'

large magnetic moment on Fe (1.78 and 1.73 The question is, does
this moment actually exist and 1s rapidly fluctuating, or does the

experimental evidence result from a non-magnetic impurity?

To answer this question, we have performed first-principles Local Spin
Density (LSD) calculations for embedded clusters representing an Fe
substitutional impurity in AL For the first time, the local lattice
relaxation around the impurity was taken into account, by determining the
Fe-At(nearest neighbors) (NN) distance which minimizes the total energy of
the system. By performing spin-polarized calculations, the effect of the

local relaxation on the magnetic moment on Fe was determined.
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Calculations were made for an Fquz cluster embedded in the potential
field of an infinite A! FCC lattice, for several values of the Fe-Al(NN}
distance. The self-consistent fleld (SCF) Local Spin Density approximation

to Density Functional theory was usedtl?i

, with the exchange and correlation
potential of von Barth and Hedin. The single particle LSD equatlons were

solved iteratively by means of the linear combinatlon of atomic orbitals

(is)

(LCAD) discrete varliational method (DVM) , employing a basis set of
numerical atomic orbitals. This approach has been shown capable of

predicting magnetic moments in solids with good precisiontig).

The variational cluster consists of three coordination shells (12+6+24)
of Al atoms surrounding a central Fe atom, iIn FCC geometry. The

spin-dependent effective Hamiltonian for the cluster is determined from the

tot.al= cluster ext.at.

total spin densities Py - P, .In the present work the spin
densities of the external atoms p;fhat' are modelled by superposition of

free Al atom densities at the crystal sites of many shells exterior to the

cluster.

The cluster density is determined as

=gn_ | DO (1)

where n . are Fermi-Dirac occupatlion numbers and wi¢are the single particle

elgenfunctions. In order to efflclently sclve the Poisson equatlion for the
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Coulomb potential, densities are projected onto a superposition of .

overlapping spherical densities(m}

model

v 2
o =v);£ £, IR ,(r )| (2)

Here the amplitudes f:&r for atom v, radial shell (nl) and spin o are found
by least squares error minimization, and Rm! are the numerical LCAO radial
wavefunctions. Magnetic moments assoclated with a particﬁlar site are
defined as the difference between spin T and spin J Mulliken populations of
the basis functions at the site.

The total energy assoclated with a given volume  with nuclel at
positions {Hv} is defined as the expectation_ value (sum over integration

mesh) of the energy density e[?,{ﬁv}) over the volume:
EqU{R 1) = <e(®. (R })>, (3)

We define the relaxation energy as the difference in total energy between

the system with nuclear positions {ﬁv} and a reference system {ﬁz}. We take
(R} to be the experimentally determined Al FCC lattice (a=4.05R) and Q the
cluster volume. In order to control numerlcal errors, the actual
computation of E

Q

noninteracting atoms (NI) located at cluster and host sites

is made via polint-by-point subtractlion of a system of

(21}
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e - <e(?.{ﬁv}) _ e'"('r',{ﬁvn)n + E:;I (4)

A convenient form for e(?,{ﬁv)) 15

q%m;)=[kmgﬁ—lm{%ﬁ)+f%aﬂmﬂfé)
c _ v

O CRO R I (5)

-

where the single particle energy is written as

‘)Iz

%Ju1=zmcﬂ¢wmu (6)

and is partitioned Into atom-~localized contributions in a manner similar to
that of Eq. (2). This step introduces no errors, since the partitioning is
constructed so as to leave the total (integral) single particle energy
invariant. The second term in Eq. (5) are corrections to the Coulomb energy
due to electron-electron and nuclear-nuclear repulsion; in the third term,

€. and B o are the exchange-correlation energy density and chemical

potential, respectivelytlT{

The sum and delta function in Egq. (5)
restricts the nuclear contributions to sites within the 1lntegration volume;

the prime (’) denotes the omission of interaction of a given nucleus with
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itself. In numerical evaluation of Egq. (5), least-squares determined model
densities (Eq. (2)) were used, consistent wlth the wvarlatlional SCF
procedure. It was found that 19,500 numerical integration points 1n both
the SCF and energy procedures (with different sampling), with the use of Eq.
(4), were sufficient to produce an average relative precision of the order
of £ 0.1 eV in the relaxatlon energies. With thls degree of precision it is
posslble to clearly evaluate the competition between magnetic and
non-magnetic configurations, even though the absolute errors 1in the total
energles are of the order of eV. Errors due to basis set truncation and the
use of model densities, which are the primary sources of dlscrepancles,
largely cancel when comparing magnetic and non-magnetic configuration

energies.

In Fig. 1 are shown the relaxation energies of the FeM‘z embedded
cluster. Only the Fe-Af(NN) dilstances were varled, the positions of the
atoms in the 2™ and Srd shells being kept fixed, as in the A2 host lattice.
From this figure it 1is seen that the minimum in the energy is achleved at a
Fe-AL(NN) distance ("d") around 2.7R, ~6% smaller than the NN distance
experimentally measured for the AL host lattice (2.868). It is interesting
that the energy minimum is reached at a value of d very similar to the sum
of the Fe and A¢ atomic radii (1.26 and 1.432, respectively). Deviations of
the points from a smooth curve may be observed in Fig. (1); in addition to
the effects of numerical noise in the sampling scheme, there may be real

features due to the constraints imposed by single shell (NN} relaxation.

Observing in Fig. (2) the Fe magnetic moments self-consistently
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obtalned for the same Fe-AL(NN) displacements, one immediately perceives
that the Fe magnetic moment, which has a total (3d+4s+4p) value of 0.96;1B
for the calculation at the A? lattlice constant, collapses to zero well
before reaching the Fe-Af(NN) distance dEZ.TR. vhich roughly corresponds to
the energy minimum. Therefore, our calculations indlcate that, as the Al
nearest nelghbors relax towards the Fe atom, the increased interaction
between host and impurity destroys the local moment. The abrupt vanishing
of moment is consistent with qualitative features of the Friedel-Anderson

model.

For wvalues of d larger than 2.703. we have performed both
splnjpolarlzed and spin-restricted calculations. The energy difference
between magnetic and non-magnetic conflguratlons is surprisingly small, even
for values of d larger than in the A¢ lattice. The main cause of this
result may be seen In Fig. (3), in which the Fe 3d, and 3dj populations are
plotted. It is observed that for larger values of the distance d, increase
of the Fe 3d moment is achieved by depletion of the 3dy orbitals and
simultaneous increase 1ln 3d4, occupation, in such a way as to leave the total
3d population almost unchanged. We find that differences in the Coulomb
energles between spin-pclarized and non-polarized calculatlons outweigh by
far the differences in the exchange-correlation term; i.e., a rigid band
moedel is inappropriate. The conservation of the total 3d population largely
explains the small net differences observed. In order to obtain a smooth
convergence of the SCF procedure, we have applied a "thermal broadening”
Aex0.13 eV to the Fermi-Dirac occupations of the discrete levels, around the

Fermi energy. This has the effect of averaging over configurations within
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~A¢ of the ground state, and also smooths the magnetic-nonmagnetic .

transition as shown in Fig. (2).

It may be observed that the equilibrium Al lattice constant that would
be found In a similar calculation for a Al‘a cluster may differ somewhat
from the experlimental value used here as reference; however, this Iis
irrelevant in the context of the present work, since relaxatlon can be
measured relative to any convenient conflguration. What we have shown here
is that, if the local lattice relaxation 1s taken Iinto 'account, the
equilibrium distances obtained result in an Fe impurity in Al which is
non-magnetic. This result 1s consistent with the prediction made applying

the Friedel-Anderson model‘>’ 7

For the unrelaxed lattice, the magnetic moments of the Al atoms of the
cluster align antiferromagnetically with the Fe moment, so that the total
cluster moment is smaller than that of the Iimpurity. For example, for
d=2.868 (Af lattice NN distance) the Fe moment 1is 0.96;1.B and the total
cluster moment is 0.55 My The antiferromagnetic response of the A! atoms
in the cluster is oscillatory, such that in the first (NN) shell each Al has

u=-0.011ph, in the second shell +0.002uB and in the third shéll u=-0.012u3.

To summarize, wlth the present Local Spin Density DVM calculations we
have shown that, when local lattice relaxation is taken 1nto account (an
effect not consldered in previous first-principles calculations(ISJ’uj)],

Fe Iimpurities 1n Af are found to be non-magnetic. This result indicates

that for this system the non-existence of a Curie-Welss behaviour and other
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experimental evidence of non-magnetism is not a result of spin-fluctuations, .

but of moment quenching due to interaction of the impurlty with the host.
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FIGURE CAPTIONS

Figure 1
Relaxation energy of the FeAt‘z cluster versus the Fe-Al{NN) distance
d. The arrow shows the interatomic distance for the pure Al lattice. ©

Non-polarized calculation. X Spin-polarized calculation.

Figure 2
Magnetic moments u on Fe for the l“eM"'2 cluster versus d. a3d moment.

+ (4s+4p) moment.

Figure 3

3d populations of Fe versus 4 for the Feﬁx‘z cluster.
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