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ABSTRACT:

Self-dual field is described by the LlLagrangian for
ordinary scalar field with a term added to it to take care
of the self-duality constraint. A self-consistent
Hamiltonian formulation is obtained using Dirac’'s method.
The constraints are second class, the auxiliary field drops
out of the Hamiltonian and the quantized theory does not
show any violation of causality .
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Self-dual fields in two dimensions., sometimes called
chiral bosons, are basic ingredients in the formulation of
the Heterotic stri r‘n;;1 . The guantization of scalar self-dual
field has been much discussed recentl ya' 3. Siegel's theor yd'
with a local symmetry seems to be eguival a\nt.!5 to the
dimension zero field formulation of Floreanini and Jacki wa.
However, the Euler-Lagrange egns. for this field lead to the
result that it is the space derivative of the field which
satisfies the self-duality condition and not the field
itself. The Hamilton equations on the other hand being
linear do result in self-duality condition for the fi eld.
Moreover, this field vioclates microcausali ty postul aLeB. No
completely satisfactory quantized 'Lhc;ory of self-dual field

seems availlabl ea' 2, B'

We propose here to study the quantization by Dirac's
met.hod7 of the self-dual field described by the Lagrangian
for ordinary scalar field with a term added to it to take
care of the self-duality constraint. The motivation for such
a study derives from an analogous situation in Yang-Mills
t.heorya: The time component of the vector potential A°
appears here as an auxiliary CLagrange multiplier) field. If
we decide to choose the gauge A®=0 before varying the action
we miss the first class Gauss’ law constraint. The Lagrange
egns. of motion do, however, lead to the vanishing of time
derivative of this constraint and we are required to impose
an appropriate boundry condition to work in the right
sector. Keeping A® term allows wus to derive Gauss® law
constraint from the Lagrangian and a self-consistent
Hamiltonian formulation is obtained by following Dirac’s
procedure where if we wish we may eliminat.ea A° by a choice
of gauge. For the action of scalar self-dual field proposed
here a similar situation is obtained except for that the
constraints are second class and the auxiliary field is
removed from the reduced Hamiltonian via Dirac bracket. We
show that a self-consistent Hamiltonian formulation can be
developed and no violation of causality in the guantized

theory occurs.
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The second order Lagrangian for scalar self-dual field
P with a gquadratic term for it will be taken to be

¥ = cis23Ca ”¢>caﬂ¢o X, cef’ o+ 8 ¢ cid

The auxiliary wvector field .K” appears linearly and the

resulting Lagrange egns. of motion are

oaHa ¢ +¢ce’f’ + o5 8 =0 €->)
H L
cet o+ M a4 =0 c3

From C3> we derive &"@ ¢ =0 and consequently from (22 we
obtain cef” + npp)opk” O , which does not lead to a"oyxv

=0 for all the components of kH. It is convenient, without

it

any loss of generality, to rewrite (13 as#.CJ\ = )uo+ Al J,
£ = c1/asrca°¢3’ -ca’@’z + ACB_-8>¢ Ced

The egns. of motion then read as Ca°~0’)¢>=0, C8°—013A=O etc.

and they are decoupled. No eqgn. for Oxo- )\1) is obtained.
Denoting by p, and n5n°=ao¢+x Cwhere MNV=2£/8C8 ¢> the
canonical momenta corresponding tc A and ¢ respectively, the
primary constraint is P~ 0. The canconical Hamiltonian is
obtained to be

% = c1s2en-n% + c1/aaca’¢oz + A 009 'g=>)

On requiring the persistency in time of the primary
constraint the secondary constraint follows to be ¢ =
M-8 ¢~ = O and the extended Hamiltonian X=X+ UPp *tV ¢ .
where u and v are arbitrary functionals, gives rise to
d1>/dta(c|>,w')=8’>\-Cu—28lv) which allows us to assure through
an appropriate choice of u and v that the constraint ¢ is
preserved in time and no additional constraints arise in the
theory. The two constraints are second class as is evident

from their Poisson brackels

L]

#nw=di agli,-1d, =« i2—1 and under Lorentz transformation

A=A =CA WA 3+ 80X, A =X ~A D+ e Oa .
+ o] Y + - [ »] 1 -
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(4(:.1.). #y.t)} = -2 ORGCx -y , (pKCx.D. kay.D) = O
gKx.12, kay.t)} = =5Cx—yd (. »)

LY

The Dirac bracket with respect to these constraints s
easily found to be

LT, D, gly DD =C(f,@> + 2fsdudz’ 8 5C2~2’> <f,p, (2,0

(P, Ca’ ,0,@> + fdz [€F,p <2, 0> (Kz,10,8>~Cdesp,O?

LG
and we can implement the weak (second class constraints) now
as strong relations, e.g. Py = O and II= o‘¢+x ve.g., TJ_=
n_-n =0.

o 1

The Dirac brackets for the self-dual field are found to
coincide with the standard Poisson brackets

CPCx, 1) NIy, 132 ¥ Cx—yd
»” »
The reduced Hamiltonian is found to be
x =1 6‘¢ e

which leads to the egns. of motion aaqb =0‘¢ .oon =0‘l'l on

using ¢8). These are consistent with the Lagrangian

formpation and no problem with the causality arises on

performing the canonical quantization , {f.g)*-. —itfo .

p.ﬂop
The Lagrangian in the first order formulation may then be
written as Cll_= 0O

r =cisen.0 ¢

= c1/a>npcn“"+c“">op¢ 10D
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which is also confeormal invariant. For the anti-self-dual
field satisfying ao¢=—al¢ we find L=C1/2)n_6+¢. The action
for the ordinary field may not in general be written as the
sum of the actions of these two self-dual fields. In the
prescription of cancnical quant.ization7 operator ordering
and hermiticity of quantized cperators must be taken care
of, We may alternatively use path integral formalism due to
Ba.ta.].tn—?radktn—\ltlka\skig for theory with second rlass
constraints. It is also posible to 1nt.roduceio a Wess-Z2umino
term to the action (13 spo that the undesired mode is
cancelled and we obtain a gauge theory with only first class
constraints. These discussion may alsoc be ext.endedlo to some

Kihler manifolds as well.
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