ISSN 0029. - 3865

CBPF-NF-023/87
CRITICALITY OF THE POTTS . FERROMAGNET = IN
MIGDAL~KADANOFF~LIKE HIERARCHICAL LATTICES

by
Luciano R. da SELVA1*2 and C.- TSALLIS!>2

1Centro Brasileiro de Pesqu1sas Fisicas - CBPF/CNPq
Rua Dr. Xavier Sigaud, 150
22290 ~ Rio Jane1ro. RJ - Brasi]

2Departamento de Fisica
Univérsidade Federal do Rio Grande do- Norte
59000 - Natal, - Bra511



CBPF-NF~023/87

ABSTRACT

Within the real space renormalisation group framework, we:
discuss the critical point and exponent v of the Potts /(ferro-
magnet in b-sized Migdal-Kadanoff-like hierarchical lattices.
Both b + « and b » 1 limits are exhibited. The important dis-
crepancies that might exist between the exact results for d-di
mensional hierarchical lattices and d-dimensional Bravais lat-

tices_are illustrated.

Key-words: Potts model; Hierarchical lattices; Renormalisation

group: Criticality.
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1l INTRODUCTION

The study of the criticality of magnetic models (e.g., the
Potts model) on d-dimensional Bravai_s lattices “"is . frequently
replaced, within éome real space renormalisation group {RG) tech
niques, by the study of df-dimensional hierarchical = lattices

(d, = Lntrinsdc: gractal dimensionaliiy =fn N, /&n b, where N

f
is the number of bonds of the two-rcoted graph whose iteration

b

generates the hierarchical lattice, and b is the chemical dis-
tance between its roots [[1,2]) which satisfy d_ -~ @& in  the
limit of large cells (b +«). It is important to evaluate, both
gqualitatively and quantitatively, the benefits as well as the
restrictions of such pfocedures (see [:1-3] and references there
in). A very simple and commonly used framewcrk is the Migdal-Kadanoff (ar
bond moving) one [4]; it is based on the so called diamond hierarchical lat
tice. Here we generalize this procedure through a camprehensive discussionof
the criticality of the g-state Potts ferromagnet. This consti-

tutes a clear illustration of analogies and discrepancies be-
tween Bravais and hierarchical lattices. Some of the results ap
pearing in Refs, [ 1] and [[5] (g = 2 and the b » 1 limit for

g = 1 respectively) are herein recovered as particular cases.
2 MODEL AND FORMALISM

We consider the b-sized d-dimensional diamond [t1ess) hierar-

chical lattice} it is defined through infinite .iteration of -

a two-rooted graph which consists in an array of bdul(b) strings

d-1)

in parallel (series), each of them constituted by.b(b bonds
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in series (parallel). Typical such lattices are presented in
Fig. 1. Two important topological properties are verified, na-=
mely: (i) for all b and d and both diamond and tress types, the
intrinsic fractal dimensionality is given df = £nbd/£nb =d ;
(ii) for arbitrary fixed b and d = 2, and only then, the dia-
mond and tress hierarchical lattices are dual of each other.
Each bond of these lattices represents the elementary Fotts:

interaction, whose Hamiltonian is given by Jﬂ = - q’E!G¢ .o (J7>0;
i’7)

the site variables o, and e take the values 1,2,...,9). We
introduce the ggpvenient variable t = [1 —exp(-qJ/kBT)]/lj. +

(q&nl)exp(iqﬂ/kBT)j (named theamal transmissdivity [ZQJ)._.Both
diamond and tress graphs are reducible in series and parallei
operations; therefore the corresponding transmissivities (noted

G, and G, respectively)can be easily calculated [6], thus yielding

D
: d-1
1 - 1-t" b
+
1+ (gq=-1)t ¢

-GD{threr) = . e : d-1 (1)

1 +(g-1) |—2—% ]
1 + (q-l)t

and

I -t -lbd -1 \b

LL + (q-l)t_l

GT(téb.d,q) = < d-1 > (2)

b
1+ (g~1) 1-t
1 +{g-1)t :
\ ' /
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Let us now focus the diamond case (the tress case is stric
tly analogous). We renormalise, for fixed d and g, a . b+sized
graph into a b'-sized one. Within this approach (hereafter re-

ferred to as Rbe,), the recursive relation is given by

G, (t'3b!,d,q) = Gy (tib,d,q) (3)
This equation admits, for all (b,b',d,q), two trivial (stable)
fixed points, namely t = 0 (paramagnetic phase; P) and . +t =1

(ferromagnetic phase; F), as well as a critical (unstahle)fbmﬁ

point noted tgb, which satisfies
Gy (¥ D", Q) = G, (), ,ib,dyq) (4)
The corresponding thermal critical exponentjvbb, is given by

_ (b/b')
Ybb! ',Enfxbg'xb.j | (3)

with A, = [d6)(tsb,d,q)/at],

t’ﬁ‘b' -a-'nd'ab:i "_'EED (t;b%d"'q) /dt] t=t§b|

3 RESULTS

The critical point t¥* depends on (b,b'd,q). These depen-

_ bb'
dences are illustrated on Fig. 2 (b-evolution of tgl and t; b-1
for d = g = 2) and Fig. 3 (t;1 as a function of (4&,q)}. The

values obtained for tgl are exact for the corresponding hierar-

chical lattices.

The critical exponent v depends on (b,b',d,q), but its

bb'
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value is one and the same for the diamond amd:tress cases. These
dependences are illustrated in IFig. 4 (b-evolution of Vi1 and

vy poy FOr 4 =g =2) and Fig. 5 (v, as a function of (d,q).
The values obtained for v,y are exact for the corresponding hi

erarchical lattices. The d-dependence of v,, at fixed value of
g deserves some comments, namely:
(i) For g .high enough (g above q.,, = 2), v, presents, as a
Function of 4, a minimum étaa value of 4 {(hereafter re-
ferred to as dmin).and then increases again and ‘reaches

the vaiue l in the 4 » » 1imit; d;in monotonously increa

ses with increasing_q and finally diverges in the g » =

limit. The whole convergence is a non uniform one. We
verify that
£inm Voaq© l/é @> 1) (6)
q-)-h L ' . '

which confirms the conjecture [ 2] that;gig Vp.1 =174

Also, {im £im vyp = 0 while - £im £im vy, = 1.
e +® drw 1
g+ , . q-
(i1i) For q low enough (g below Din 0.215), Vo1 presents,

as a function of d, a local maximum at a value of & (here
after referred to as. d4___), and diverges in the d - llim
it; dmax monotonously increases from slightly below 2 to
2 while g decreases from q ., t00; v,, (4 _ ) monotonous
ly increases from about 2.96 to infinity while g decreases
from i to 0. Consistently with these observations, the
g = 0 curve v, vs. d presents two branches: (a) in the
interval 1 2 d < 2, v,, presents a minimum at d = 1.5 and

vy, = 3.36, and diverges in both @ »1 +0 and 4 »2 -0 lim
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its; (b) for 4 > 2, monotonously - decreases from in-

V21
finity to one while d increases from 2 to infinity.
Points (i) and (ii) above mentioned have been verified for

V,q »Although we have not systematically checke@, -similar facts gre.expected
for Vipte Summarizing, three regimes are observed, namely:

(1) 0 < q < dia} ©Xcept for a local maximum in the neighbour
hood of 4 = 2, the general trend of “bb‘ is to decrease from in
finity to one while d increases from one to infinity;

(11) q , <d9=9

to one while d increases fyom one to infinity; (iii) g >q .t

nax’ Vbb' monotonously decreases from infinity

Vipt presents a minimum while 4 increases from one tQ infini-
ty (vbb‘ diverges in the 4 + 1 limit, and goes to one in the
d + « limit.

Another point which deserves - to be commented-

is the b + » behaviour of t?} and Vyp ! Qur numericgal re-

bb'
sults are consistent with the following behaviours:

(i) diamond lattices: tf , ~ 1 - {d-1)£nb/b (¥q), and

t¥ . v1-A(d,q)/b, A(d,q) being a pure number which

satisfies A(l,q) = 0 (similar laws are obtained for the

tregss lattices):

{ii) diamond and tress lattices: n B(d)¢nb/inénb: (Vqg),

Yb,1
B(d} being a pure number which decreases for increasing

d; Vb b=1 almost independs from b, and practically-coincides,
in the b + «» limit, with v21(d:q) (see Fig. 5)
The result obtained for Yy 1 is in ~<variance with the Dbe

haviour expeeted for lattices with §init e critical temperature
(i.e., 0 < £im tx < 1): in such cases, finite size scaling

Jﬂéh

bd'
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arguments [_7] usually suggest, in the b > = " 1imit, a &o-

garithmic approach to a §inite value.

Let us now turn our attention onto a different type of
1imit, namely the differential one (i.e., b'=l and b=1 + u with
u ~ 0 +). We first notice that if we consilder the hierarchical
lattices generated by the b-sized d-dimensional generalized
ﬁheatstone-bridge graphs (see [}] and references therein)with

transmissivity noted G_, we have, for all (t;b,d,q),

GD(t:b,d,q) < Gw(t:b,d,q) < GT(t:b,d;q) (7)

This is a triwial consequence of the fact that’ the transmis-'
sivity of-any graph is a monotonously increasing function of the édemén
. tary transmissivity - of any of its bonds, together with thefact
that the breaking {(collapsing) of all the "transverse” bonds
of the Wheatstone-bridge graph _precisely yields the diamond
(tress) graph [ 6]. It is then “straightforward to verify that, in
the b -+ 1 limit, the RGbl ;ecursive relation is one Jnd the
same for both diamond and tress cases (and condequently fox

the Wheatstone-baidge case as well, as ik is<between tham;rwmg

ly

£ ot + u | tint - (38-1)

q T+ E0E

-e 3 +w@-ne] [ ,_¢ |

The associated critical fixed point t* satisfies

-t [ #Ag-l) R | ek
itnte - @ J&E L g ] (%)

q +(q-1t
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Thilis equation yields the results presented in Fig. 6 as well

as the following ones:
t*nl-q%l  @s1+01 (10)

which coincides. with the asymptotically exagt result for d4d-

dimensional hypercubic lattice [ 8];

1%
/q +1

t* =

(d = 2) (11)

which coiné¢ides with the exact result for bhe square-lattice:;

and

gx o o~ (4712 d > =) (12)

which differs from the exact result for d-dimensional hypercu -
.bic lattice,

The fact that the 4 + 1 result is asymptotically coincident
with that of the d-dimensional hypercubic lattice comes f£ram
the fact that the linear chain has a special geometrical pro-
perty, namely to simultaneously be scale invariant (hierarchi-
cal lattice) and translationally invaiiant (Bravais lattice).:
The fact that the d_; 2 result exactly recovers that of the
square-lattice comes from the confluence of the diamond and
tress transmissivities on the seff-dual Wheatstone-bridge trans
missivity. This is a manner for understanding why the < ddiffen
ential Migdal-Kadanoff approach preserves self-duality.

From Eq. (8) we also obtain the thermal critical exponent:
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-1 1 ] wme®
‘\J-l =Y +£nt¥* -g"q; [q—z —2(q—1)t* £n 1 t.

| 1 +{g-1)t* "

- q (13).

This equation yieélds the results presented in Fig. 7 as well as

the following ones:
v & 1/(d-1) @+1+0) (14)

which recovers the exact result for d-dimensicnal hypercubic lat

tice [(8]; and

vﬁl = 2|: -1 !;n(/E + 1)]' (d = 2) (15)
/E .
and

v+l @ > =) (16)

which do not recover the exact results for the hypercubic lat
tice.

4 CONCLUSION

Let us summarize the main features of the present RG ap~
Pﬁxxh of the g~state Potts ferromagnet in hierarchical lat-
tices. This approach is based on the renormalisation of b-sided
two-rooted d-dimengional Migdal-Kadanoff-like graphs into b'-
sized ones (b'<b). The results associated with b' = 1 are,
as usual, exact ﬁor the corresponding hierarchical lattices.

Let us first stress an important point: transitions are,
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for all 4 > 1 and all q > 0, of the continuocus type. Thig fact pre-
sentsra.remarkable-diécrepancy with Bravais lattices, which are known +o
yield: first-drder phase transitions for all d > 1.if ¢ is
high enough. In other words, the loss of the translétional in-
variance of the system makes discontinuous phase transitions di
sappear.
Another interesting point is that, for fixed (b,b',d,q),

the diamond and tress types present a differentfcnﬁﬁnarpbinubﬁt
-share one and the same value 04 v. Thé d-dependence of v; at-a fixed: value

df q, presents three different shapes according to whether g is

in the interval Eﬁ'qmin)'[éﬁin'qmaQJ or (q . ). In the
first case v presents a local minimum and a local maximum. in the
interval 1< @ 2 2, and monotonously decreases down to one for
d increasing above 2. In the second case, v monotonously de-
creases down to .one for d increasing above one. In the third

case, v presents a minimum at a value of d which  increases

when ¢ increases; also lim v = 1/d.
q o

The b + = behaviours for t* and v .are partially different
from &hat is normally found for  Bravais lattices. However,
the reason. for -that: might be not the loss 6f*trans-
lational invariance but rather the fact that the.critical tem
perétUre for the present cases is, in the b » « limit, not
finite (Tc = 0 for diamonds, and Tc + « for btesses).

Finally, let us note that, in both b* = b -1 with b » =«
and b' = 1 with b + 1 cases, the linear expansion factor b/b'
tends to unity. However, important differences are found ibor
these two situations. For instance, in the former t* -»0ior 1,

while in the latter, t* becomes a finite value between ¢ and

1. In some senSe,'this'type of discrepancy reirforces the well
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known fact that the knowledge of the intrinsic fractal  di-
mensionality of an hierarchical lattice is nothing but one
(though important) of the many ingredients which ° determine

their criticality.

One of us (LRS) acknowledges useful remarks from E.M.F.
Curado; the otherone (CT) gratefully acknowlaedges very fruitful

discussions with B. Shapiro as well as interesting . remarks

from J.R. Melrose.
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CAPTION FOR FIGURES

Fig.

Pig.

Fig.

Fig.

Pig.

1 -

b-sized d-dimensional two-rooted graphs and ndrres—
ponding hierarchical lattices (o and e resﬁectivé de
note the roots and'internai sites).

q =d = 2 critical point within the Rbe. apprboach
(with b' = 1 and also b' = b - 1) for both digmond

and tress types; —+—:— .denotes the exact result for

“the. Ising flerromagnet in square lattice.

g-and d—dependences of the crifical point within . othe
RG12 approach. (a) diamond {the exact, result. for squa
re lattice has been included for comparison); (b) dia
mond (the results corresponding to the Ising ferromag
net in hypercubic lattice have been included for com~
parigon; the dashed 1line is a guide to the eye); (d)
and (d) the same for the tress type.

q =d= 2 critical exponent v within the Rbe, appyoadh
(with b' =1 and also b'! =b -1) for both diamond and
tress types (one and the same); —+«—.— denotes the
exact result for the Ising ferromagnet in squaré lat
tice.

q - and d-dependances of the critical exporient v within
the RG12 approach (one and the same for both .diamond
and tress types) (a) for typical .values of d (the exact
result for square lattice has been includédd for compa=-
rison;\(b)*fo;-t?picai values of ¢ (the results corres
ponding to the Ising:ferromagneﬁ in "hypercubic lattice
have been included for comparison; -the dashed line is

Arguide to the eye).
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Fig. 6 -

Fig. 7 -

g - and d-dependances of the critical point within the
differential RG (B' =1 and b +1). (a) for typical val-
ues of d (the d = 2 curve caincides with the'exact. one
for square lattice); (b) for typical values of g {(the
results corresponding.to tﬁe Ising ferromagnet in hy-
percubic lattice have been included for comparison; the
dashed line is a guide to the eye).

g - and d-dependances of the critical exponent v within
the differential RG (b' =1 and b + 1).(a) for gypical
values of d (the exact result for square lattice  has
been included for comparison); (b) for typical valuee of
g(the results corresponding to the Ising ferromagnet in
hypercubic lattice have been included for comparison;

the dashed line is a guide to the eye).
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