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abstract

We construct path integral representations for the evolution operator of q-oscillators with

root of unity values of q-parameter using Bargmann-Fock representations with commuting

and non-commuting variables, the differential calculi being q-deformed in both cases. For

q2 = −1 we obtain a new form of Grassmann-like path integral.
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1 Introduction

Path integrals over Grassmann variables play important role in modern field theory. In the simplest

case of one degree of freedom it describes the quantum mechanical system with two possible states.

It is natural to generalize the consideration for the case of quantum mechanical system with arbitrary

but finite number of states. As is well known, operator description of such systems is realized with

help of q-oscillators algebra [1], parameter q being root of unity: qp = 1 for some integer p. Note

that in general quantum algebras in the root of unity case exhibit rich representation behaviours with

very special properties (including bound on their dimensionality) and are important in two-dimensional

conformal field theories [2] and in statistical mechanics models [3]. We shall consider even integer p, so

that q(k+1) = −1 for k = p/2 − 1. The case q2 = −1 corresponds to the usual fermionic oscillator. Of

course, generalization to field theory requires the consideration of more complicated algebra of system

of q-oscillators and its precise physical meaning depends on the chosen form of commutation relations

for the different q-oscillators (bosonic excitations on lattice with finite number of states at a given site

or system with fractional statistics). Here we consider one degree of freedom only and the aim of this

letter is to present possible Bargmann-Fock representations of the q-oscillators with finite Fock space

and to construct corresponding q-deformed path integral. An interesting attempt to acheive this was

made in [4] but as we discussed earlier [5] the authors did not take into account that the creation and

destruction operators used by them are not conjugated to each other in the root of unity case and as the

final result they obtained discrete approximation for the path integral representation of (non-unitary)

evolution operator.

If the Hilbert space of a system corresponds to representation of some Lie group the corresponding

path integral can be constructed with help of generalized coherent states (see, e.g., [6] and refs. therein).

For our construction it is not necessary to assume that there is any symmetry. In general we shall follow

the method suggested by us in [5] for the q-deformed path integral in the case of real q-parameter. It

is interesting that even in the simplest Grassmann-like case q2 = −1 there are different forms of BF

representation and path integrals depends on the way how the Planck constant h̄ enters the commutation

relation. To generalize the usual Grassmann path integral for the case of higher roots we suggest another

algebra of variables on different time slices, the Grassmann integral being independent of the modification.

Such path integrals can be useful for consideration of systems on a lattice [7], in anyon physics [8],

for description of quantum particles on finite sets of points [9] and for q-deformed string theory [10].

2 Path integrals for different choices of variables

The usual starting commutation relations (CR) for q-oscillator operators is [1]

aa† − qa†a = q−N , a†a = [N ]q ≡ qN − q−N

q − q−1
,
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where qk+1 = −1 for some integer k and a† is hermitian conjugated to a. To construct the Bargmann-Fock

(BF) representation we introduce the operators b and b̄ (well known in the case of real q-parameter)

b = qN/2a , b̄ = a†qN/2

with CR

bb̄− q2b̄b = 1 , (1)

bb̄− b̄b = q2N , (2)

b̄b = [N ] ≡ q2N − 1
q2 − 1

.

For root of unity value of parameter q operator b̄ is not hermitian conjugate to b, but instead

b† = b̄q−N , b̄† = q−Nb .

Fock space representation of the operators is the following

b|n〉 = qn−1
√
[n]q|n− 1〉 , b̄|n〉 =

√
[n+ 1]q|n+ 1〉 , N |n〉 = n|n〉 . (3)

As [k + 1]q = 0, this Fock space is k-dimensional.

There are two possibilities for explicit realization of (3). One can construct BF representation in the

space of antiholomorphic functions with the basis

ψn =
z̄n√
[n]q!

,

with either commuting z̄, z variables or non-commuting ones. In both cases the variables must satisfy

the condition of nilpotence zk+1 = z̄k+1 = 0 to provide the finiteness of the Fock space.

We shall consider this on the example of Grassmann-like q2 = −1 case 1. Physicaly the possibilities

correspond to the different forms of the CR (1),(2) after recovering of Planck constant h̄. For q2 = −1
case and in representation (3) both CR (1) and (2) become the same

bb̄+ b̄b = 1 . (4)

As usual one understands that Planck constant in this CR is equal to unity. But it is possible to recover

it in two different ways. One way is to present (4) in the form

[b, b̄] = h̄(1− 2γb̄b) , (5)

where γ is dimensionful constant such that h̄γ = 1. This CR corresponds to a curved phase space

dynamics with Poisson braket

{z, z̄}P = i(1− 2γz̄z) ≡ iω−1(z̄z) , (6)

1We call this case Grassmann-like because though operators b and b̄ satisfy the anticommutation

relations, we use for the construction of the path integrals either commuting variables or variables with

non-Grassmann algebra on different time slices.



– 3 – CBPF-NF-022/95

where z, z̄ are the classical counterparts of b, b̄ and ω = ω(z̄z)dz ∧ dz̄ is the symplectic form. Evolu-

tion operator corresponding to such quantization must be expressed with help of q-path integral with

commuting variables.

The key observation for the developing of path integral representations is that CR written in the

form (1) does not lead unavoidably to BF variables with CR zz̄ = q2z̄z , but to CR

∂̄z̄ − q2z̄∂̄ = 1 (7)

only. So one can consider two parametric differential calculus on the quantum plane [11] and for the case

of curved phase space (5) choose the commuting complex variables zz̄ = z̄z with the following nontrivial

CR only

∂̄z̄ + z̄∂̄ = 1 , dz̄∂̄ = −∂̄dz̄ , z̄dz̄ = −(dz̄)z̄ (8)

with their conjugated counterparts. The creation b̄ = z̄ and destruction b = ∂̄ operators act in the BF

space with the basis {ψ0 = 1, ψ1 = z̄} and the scalar product∫
dz̄dzez̄zψ̄nψm = δnm ,

where the integral is defined by the usual Berezin rules∫
dz̄ z̄ =

∫
dz z = 1 ,

∫
dz̄ =

∫
dz = 0 .

The method of the path integral construction is analogous to that in the case of usual Grassmann path

integral (see e.g. [12]). As a result the evolution operator kernel takes the form

U(t′′ − t′) =
∫ (∏

t

dz̄(t)dz(t)
1− 2z̄(t)z(t)

)
exp

{
z̄(t′′)z(t′′)−

∫ t′′

t′
(z̄(t)ż(t) + iH(z̄(t)z(t))) dt

}
,

with ż(t) denoting the usual derivative with respect to time: ż(t) = dz(t)/dt. Note that the integral

measure corresponds to the form of nontrivial Poisson bracket (6) after putting γ = h̄ = 1.

If after the recovering of Planck constant the CR (4) takes the form

bb̄+ b̄b = h̄ ,

then it corresponds to Grassmann phase space with anticommuting variables. In this case the BF variables

seems to be identical to the usual Grassmann path integral. But there is one subtlety. In the usual

construction not only z(ti) and z̄(tj) anticommute for any time slices ti, tj but the same variables on

different time slices anticommute also, e.g. z(ti)z(tj)+ z(tj)z(ti) = 0. Such CR can not be generalized to

other roots of unity values of parameter q. So we introduce another CR on different time slices (cf. [5])

z(ti)z̄(tj) + z̄(tj)z(ti) = 0 , z2(ti) = z̄2(ti) = 0 ,

z̄(ti)z̄(tj) = z̄(tj)z̄(ti) , z(ti)z(tj) = z(tj)z(ti) .
(9)

One can check that for such CR all ingredients of path integral construction (scalar product measure,

relation between normal symbol and kernel of operators, etc.) remain the same as in the case of usual

Grassmann path integral. So the result proved to be the same also.
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The CR (9) can be easily generalized to other values of deformation parameter, for example, for

q3 = −1 one has
z(ti)z̄(tj) = q2z̄(tj)z(ti) , z3(ti) = z̄3(ti) = 0 ,

z̄(ti)z̄(tj) = z̄(tj)z̄(ti) , z(ti)z(tj) = z(tj)z(ti) .
(10)

In this case the BF representation is defined on the space of function with the basis

ψ0 = 1 , ψ1 = z̄ , ψ2 = z̄2 , (11)

which is orthonormal with respect to the scalar product

∫
dz̄dz ψn(z̄)µ(z̄z)ψm(z̄) = δnm , (12)

where

µ(z̄z) = 1 + q2z̄z + q2z̄2z2 .

Here the integral is defined by the relation [4]:∫
dz̄dz znz̄m = δnkδmk[k]q! , n,m = 0, 1, 2 . (13)

Because of the nilpotence a general Hamiltonian has the form

H = ω(ub̄b + vb̄2b2) , (14)

where the constants u, v are restricted by the hermiticity condition H† = H and can take three couples

of the values: i )u = 1, v = −q; ii)u = 1, v = 1− 2q; iii)u = 0, v = −q2. In this case and in the cases of

higher roots of unity the measure of scalar product in BF spaces and relation between normal symbols

and kernels of operators are not expressed with help of appropriate q-deformed exponents. This prevents

from writing the general expression of path integral for arbitrary root of unity. But due to nilpotence for

any given value of parameter q it can be done analogously to the case of real q-parameter [5].

As usual the action of any operator A in BF Hilbert space can be represented with the help of its

kernel A
(Af)(z̄1) =

∫
dz̄2dz2 A(z̄1, z2)f(z̄2) , (15)

where

A(z̄1, z2) =
2∑

m,n=0

Amnz̄
m
1 zn

2 . (16)

Here one more pair of q-commuting coordinates is introduced, the CR for different pairs being defined

by (10). Now we can express Amn through scalar product

Amn =< ψm‖A‖ψn > (17)

and find a kernel of any operator by direct calculation. We consider the usual Schrödinger equation (cf.

discussion in [5])

i
d

dt
Ψ(z̄, t) = H(b̄, b)Ψ(z̄, t) , (18)
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with the Hamiltonian (14). The integral kernel for the infinitesimal operator

U ≈ 1− iH∆t ,

takes the form

U(z̄, z; ∆t) ≈ g(z̄z)exp{−iHeff∆t} , (19)

where g(z̄z) is the kernel of identity operator

g(z̄z) =
∑

n

ψn(z̄)ψn(z̄) = 1 + z̄z + z̄2z2 ,

and effective Hamiltonian Heff is defined by the relation

Heff (z̄z) = g−1(z̄z)H(z̄z) , (20)

where H(z̄z) is kernel of the initial Hamiltonian. Using the nilpotence one obtains from (20)

Heff (z̄z) = ω(uz̄z + q(u+ v − qu)z̄2z2) .

Now we can write the convolution of K infinitesimal evolution operator kernels

U(z̄KzK−1) ∗ U(z̄K−1zK−2) ∗ ... ∗ U(z̄1z0) =

=
∫

dz̄K−1dzK−1...dz̄1dz1 µ(z̄K−1zK−1)...µ(z̄1z1)

× g(z̄KzK−1)...g(z̄1z0)e−iHeff (z̄KzK−1)∆t...e−iHeff (z̄1z0)∆t . (21)

Due to nilpotence it is possible to convert the functions g and µ to the exponents and in the continuous

limit ∆t → 0 one obtains the path integral for the case under consideration (q3 = −1)

U(t′′ − t′) =
∫ (∏

t

dz̄(t)dz(t)(1 + qz̄(t)z(t))

)
(1 + z̄(t′′)z(t′′) + z̄2(t′′)z2(t′′))

× exp

{
−
∫ t′′

t′
[(1 + (1 + 2q)z̄z)z̄(t)ż(t) + iHeff (z̄(t)z(t))] dt

}
. (22)

The path integrals for higher roots can be derived in the same way. For example, for the next value

q4 = −1 one has

U(t′′ − t′) =
∫ (∏

t

dz̄(t)dz(t)
[
1 + (1 + i)z̄(t)z(t) + (2c− 1)z̄2(t)z2(t)+

i(1− c)z̄3(t)z3(t)
])
exp{z̄(t′′)z(t′′) + (c− i/2)z̄2(t′′)z2(t′′) + (2c− i/3)z̄3(t′′)z3(t′′)}

× exp

{
−
∫ t′′

t′

[
(1− (1/2 + ic)z̄z − 3(2c− i/2)z̄2z2)z̄(t)ż(t) + iHeff (z̄(t)z(t))

]
dt

}
, (23)

where c ≡ 2−1/4 = 1/
√
[2]q and Heff is defined again by the relation (20) with the corresponding kernel

g(z̄z) = 1 + z̄z + cz̄2z2 + cz̄3z3 .
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The kernels U in Eqs. (22) and (23) correspond to the product of unitary up to a (∆t)2-terms

operators with subsequent limit ∆t → 0. So these kernels seem to be the kernels of unitary evolution

operators. However, the integrands of these path integrals have not the form exp{iS}, where S is a

real functional. This is quite unusual and prevents from ordinary interpretation of a path integral. The

obvious reason for this is the CR (10) for z and z̄ coordinates which contain complex parameter q.

Let us consider for q3 = −1 another possibility using commuting variables with CR (7) for variables

and derivatives in analogy with Grassmann-like case. The basis of BF representation has the same form

(11) as in the case of noncommuting variables and is orthonormal with respect to scalar product (12) with

the mesure µ = 1 + z̄z + z̄2z2, the integral being defined by (13) (but now with commuting variables).

The derivation of the path integral is essentially the same as in the case of noncommuting variables and

the result is

U(t′′ − t′) =
∫ (∏

t

dz̄(t)dz(t)(1 + 2z̄(t)z(t) + 3z̄2(t)z2(t))

)
(1 + z̄(t′′)z(t′′)

+z̄2(t′′)z2(t′′)) exp

{
−
∫ t′′

t′
[(1 + z̄z)z̄(t)ż(t) + iHeff (z̄(t)z(t))] dt

}
. (24)

The effective Hamiltonian is defined by the general formula (20) again, but now for all hermitian Hamil-

tonians of the form (14) listed above Heff proved to be real function: i) Heff = ωz̄z for u = 1, v = −q;

ii) Heff = ω(z̄z− z̄2z2) for u = 1, v = 1−2q; iii) Heff = ωz̄2z2 for u = 0, v = −q2. Note that the normal

symbols and the kernels of all hermitian Hamiltonians are complex. Thus in the case of commuting

variables z̄ and z the path integral has the usual form exp{iS} of integrand with real functional S even

for complex parameter q of an oscillator deformation.

After restoring the Planck constant h̄ the expression (24) takes the form (for definiteness we consider

the Hamiltonian (20) with u = 1, v = −q)

U(t′′ − t′) =
∫ [∏

t

dz̄(t)dz(t)
h̄

(
1 + 2

z̄(t)z(t)
h̄

+ 3
z̄2(t)z2(t)

h̄2

)](
1 +

z̄(t′′)z(t′′)
h̄

+
z̄2(t′′)z2(t′′)

h̄2

)
exp

{
− 1
h̄

∫ t′′

t′

[(
1 +

z̄z

h̄

)
z̄(t)ż(t) + iωz̄(t)z(t)

]
dt

}
. (25)

One can see that there is simply no quasiclassical approximation corresponding to the limit h̄ → 0 (since

the terms in the measure and in the action diverge). This is an expected result because, as it is well

known, the quasiclassical approximation for spin-like systems considered here corresponds to the limit

S → ∞, where S is the spin of the system [13]. Systems with fixed spins (numbers of states) have not

(quasi)classical limit, as is confirmed once again by the expression (25).

Let us notice that while the real phase space variables (coordintaes and momenta) are not suitable in

describing spin systems, the BF basis is. The simplest and well known example is the Grassmann algebra

variables for describing spin 1/2 particles. It is also of interest to mention that in a recent attempt to

formulate a regularized quantum field theory by requiring nonzero minimal uncertainties in the positions
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and in the momenta, for the real q case the use of Bargmann-Fock space appears to be the appropriate

one [14]. The q-deformed path integral previously given [5] for the real q values, has also been formulated

in the BF basis emerged in a natural way.

The fact that creation and destruction operators b̄, b are not hermitian conjugate is quite unusual

and technically inconvenient (but as they are non-conjugate up to pure phase only this does not cause

real problems). One can try to use hermitian conjugated operators a†, a for the path integral construction

noticing that the relation (1) is in fact a polynomial one due to nilpotence. In particular, in q3 = −1
case and in the Fock space representation the relation (1) is equivalent to the CR

aa† + (a†)2a2 = 1 . (26)

This CR looks like a natural generalization of the usual relation (4) for fermionic operators2. To con-

struct the BF representation for (26) one must introduce unusual ”differential” operators D, D̄ with the

properties

D̄z̄ + z̄2D̄2 = 1 , Dz + z2D2 = 1 ,

z̄3 = z3 = 1 .
(27)

Consider for definiteness the commuting variables zz̄ = z̄z (one can consider other possibilities, e.g.

anticommuting z and z̄). The basis of the functions (11) is orthonormal with respect to the scalar

product (12) with function µ = 1 + z̄z + z̄2z2, the integral being again defined by (13). The operators

z̄ and D̄ are hermitian conjugate with respect to this scalar product. One can check that the normal

symbols AN (z̄z) of operators A and their kernels A(z̄z) are related with help of the same function µ(z̄z)

that defines the scalar product, the kernel being defined in the usual way

Aψ(z̄) =
∫

dz̄′dz′A(z̄, z′)ψ(z̄′) .

Thus using the nilpotence and usual procedure for path integral derivation one obtaines

U(t′′ − t′) =
∫ (∏

t

dz̄(t)dz(t)(1 + 2z̄(t)z(t) + 3z̄2(t)z2(t))

)
µ(z̄(t′′)z(t′′))

× exp

{
−
∫ t′′

t′
[(1 + z̄z)z̄(t)ż(t) + iHeff (z̄(t)z(t))] dt

}
.

Analogous expressions can be derived for the algebras which correspond to Fock spaces of arbitrary

dimension.

2One can show that the algebra of operators αα† + (α†)nαn = 1, has (n + 1)-dimensional Fock rep-

resentation; a general consideration of polynomial algebras with finite-dimensional Fock representations

will be given elsewhere.



– 8 – CBPF-NF-022/95

3 Conclusion

We have succeeded in formulating q-deformed path integrals for root of unity values of q-parameter

for simplest nontrivial quantum mechanical systems. Using different differential and integral calculi

on quantum plane we constructed the q-deformed Bargmann-Fock representations and path integrals

for commuting and non-commuting variables. As we have shown different forms of path integrals are

possible even for the well known case of anticommuting creation and destruction operators leading to

different Grassmann-like path integrals. The existence of non-standard forms of path integral for fermionic

operators permited us to generalize it to the case of q-oscillators with higher root of unity q-parameter.

The essential distinction of the generalized Grassmann path integrals is that they have a non-trivial

integral measure and a non-Gaussian integrand.
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