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ABSTRACT

It is shown that when dolng perturbative calculations with
dimensional regularization the straightforward use of Bochner theorem glves
an alternative method to the usual .ones, without following Feynman or
Bogolinbov prescriptions. Several examples are discussed. The method 1s

equally applicable when working with analytic regularization.
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1 INTRODUCTION

When studying perturbative quantum field theory by using Feynman
diagrams techniques, the bare particles have as propagators the Feynman
causal Green function A (with mass or without 1it). A second order loop
leads then to the preoduct 5: &2 which is not weli defined due to the
singular behavior at the orligin.

Working in momentum space with Fourler transforms we have the well

known expression of the convelutlon theorem

(2m)” F(8,8,) = F(A) * F(a,) = P *P, (1)

where P1 = Idva1 e'P>
is the propagator in momentum space .

In (1) the singular behavior manifests itself as the famous
ultraviolet divergences present in the convolution integration.

The usual procedure to deal with (1) consists in the use of

1 or Bc)goliubc:n.f[21

Feynman parameters method to get an expression which is
then regularized to obtaln sensible results.
The singular character of (1) can have a different aspect if we

(31 . The

leave the number of dimensions as a free regularizing parameter
Fourier antitransform of the propagator in momentum space is then an

analytic functlon of v

FUp,) = A ) (2)
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_2_
-1 v
F (Pl‘le = (2n) ﬂ1(V) Az(v) (3)
- Vv
PI'P2 = (2n) F(Ai(v) ﬁz(v}) (4)

The ultraviolet divergences appear now as poles of the analytic function of
v defined by (4). The Feynman, {or Bogolinbov) trick is an elegant way to
cast the convolution integration into a simpler expression, leaving the
“complications” to a final integration over the extra auxiliary variables.
We want to show that we can get the same results without the ald of extra
parameters {except v) by means of a systematlc use of the following well
known theorem:

Bochner Theorem“] .

If a function f{x,xz...xv) depends only on

172
)

x=(xf+x:+...+x: its Fourier transform:

v i-) .
I(pl...pzi = Jﬁx £f{x) e P ¥ {s)
depends only on
1/2
2, 2 2
P "[Pi'"P2 + * Pv]
and:
- ¥
I(p) = _{_g:}_ If[x) x*J _ (px) dx (6)
> 1)

P
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We want to point out that the causal propagators are functions of
tz-x2+1e. So, its Fourler transforms are functions of E?—pz—ie. We must
also keep in mind that this is equivalent to perform all calculatlons in
euclidean metrle, and later on a dilatation of time, plus an analytic
continuation in the coeficient of the dilatation (say K).

Finally make K=1te (see ref., [5]).

Having decided to use euclidean metric we are forced to use
Bochner theorem and the computation of (1) or {(4) is done according to the
following steps. |

First we take the antiFourler transform of each factor of the
convolution. This can be done with the ald of Bochner theorem or simply by
the use of a table of Fourier transforms. For example, if we use ref. [6]
we get the following results:

a) For a massless particle (note than when using Bochner formula

(6) for F'', the factor (2n)”" has to be suppressed).

2

-2 -1(1 g-z v 2 1-5
P=p Av) = F [_] =2 I"[E—l] [x] n
p

or, more general (ref. [6] p.365)

Y on T|Y-a “'%
P =p2® Aly) = 22 2 _ [x’] (8)

b) For a massive particle, we have
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-
—1 K v ()
2 —1
1 _m 2
P=—— Alv) = > (9)
p_+m —=1
2
x
or, for arbitrary powers (ref. [6] p.365)
v K (mx)
—=A v
1 2> p? z7r
P = y Af{v) = {10}
p2+m2 T'(A) x;-x

now for the second step we take of course the product of the functions whose
convolution {in p-space) we want to evaluate. In configuration space both
functions of the product depend only on x and therefore we can use again
Bochner theorem to get the final answer. For that purpose, all we need is a
table of integrals containing the case in which the Integrand is the product
of a power of the variable times (at most, for the usual theories) three
Bessel functions (see ref. [7] p. 694, form 6.578).

We shall 1llustrate how the method works in the common example.

2 CONVOLUTION OF MASSLESS PROPAGATORS

From {7) we get:

F [i; » :1:5] =¥ rz[g - 1] [x’]w (11)
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Taking Fourier transform with (6) we have:

1_2-15=___r[£-1]Idxx‘“’*’”x*J (px) (12)

o
o
I
=

From ref. {7} p.684. We get:

: r
Idx = Jp(ax) S (13)
So, with appropriate substitutions, we obtain:
- 2{v v
- - T [ 1]r[2-—
Lel=2? [21:] f: 2 (14)
P P p r{v-2)

This formula can easily be generallzed to arbitrary powers of the massless

propagators (see eq. 8) (analytic regularization)

1 4
1, 1 _rAtwdl o, v_ 2(wip)-2v _2
3o 25 v r 30 r 5 Bl |dx x X J!_llpx)
? g (2n)" p? 2
and using (13)
v v v |4
L . _}" ) 2-—5 [zu]-v r‘[i-a]l‘[—z—-B]l"[mB'i] (15)
2 pza pz (n+B )= r{v-a-8)
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3 CONVOLUTION OF.A MASSLESS PROPAGATOR WITH A MASSIVE ONE

Here we have to use the product of (7) and {(9) and the Bochner

theorem

.1

2 : r 2-1] 3-33
« 1 _2 2 2 Idx x ¢ x*1J (px) K (mx)

-
Nlt
NI!

p pzﬂn2 (2m)¥ %—

We now use ref. [6] p. 693 (6.576-3)

bPT [p-h+u+ 1] r [p-?t-uﬂ]
2

2
- _ pAtutl pAtl b
Idx K w0 3,00 = — F[ Jutl pA ,p+1.-———2]

2 r(1+p)

and we finally get (Cf. ref. [3]):

< v v
1 o1 _2 2wt I‘[i-l]l"[ -E] [ AL '_I’z] (16)
PR e Y i

It is also easy to evaluate the vertex for zero momentum transfer.

For this case, the convolution to be done is:

L. 1
2

-

pPen?

The calculation is almost the same as that for (16). The only difference is
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that now we have to use (10) with A=2. We get

"= v v
1, % 2 2 v-6 F[E—I]r[:i-i] v v _pz
> 2 = = F 1,3-5;5;7 {17)
P [pz +m2] (2n) r [-2-] m

4 CONVOLUTION OF MASSIVE PROPAGATORS

For massive propagators we can use (10). Bochner theorem (eq.(6))
leads us te¢ an integral that contains a power of the integration variable

and the product of a Bessel function of the first kind Jv[px). times two

2
Bessel functions of the third kind Kp(mlx) and Ko(méx). However a Bessel Ka

function can be written as a combination of Bessel Jx-functions {see ref.
(7] p.951) so that the integration is reduced to a combination of integrals
containing a power of x and a product of three Bessel functions of the first
kind. The answer, then, can be obtained by means of ref. [7] form 6.578-1

p.694 or 6.578-2.

5 DISCUSSION

In a way, the method just explained is the most natural one, as 1t
is based on the canonlcal application of the convelution theorem and the
generalized Fourler transform of causal distributlons. This together with

the use of Bochner theorem and the dimensional regularization techniques,
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completes the scheme.

The procedure can be expressed more synthetically in the followlng
alternative way:

Let us take two spherically symmetric functions fi(p) and fz(p}

(two propagators, for example). Then we can use Bochner theorem to write

v v
1— bl _
gi(x) = F'l(fl(p)} =x 2 Idp pa fi{p) J, (px} - {18)
5—1
Now, we multiply together g, and g,
L4 ' L4
_ 2=V 2 2
31("]32(") = X Idp1 f1(p1)p1 JL,(pim Idp2 fz(pz) P, Jz-’(pzx) (19)
2 2
Using Bochner theorem agalin
1-.‘:. v v
p 2 2-v 2 z
* =
i‘ltp) fztp] - dx % X Jv (px) dp‘ f’(pllr.u1 Jv (plwd.
(2n} —1 7-1
¥
2
.Idp2 f(pa) P, qu(pax) {20)
2
But we find in ref. [7] p.696; 6.57-9
2«.-1 azu-l

Idx x™ J (ax) J (bx) J {cx) = —7
* ® « (abe)* l"{u-l-i} l"(i)
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where A is the drea of the triangle whose sldes are a, b and ¢. When a b ¢

cannot form a triangle the integral 1s zero. This "amusing" formula allows

us to write

v 1
-2 - v v v v=3
2 2 1= - = f_(p )
2 " 2 2 . 2 : 2 "2
» = —_—
f1(p} fztp} v v-1 P Idp1Idpz p1 pa fztpi) v
(2n) F(—E—) _ rul
(pp,p,)
V.o .l
X u'a p2™v . I
fI(p)*fz(p) = v .1 Idp1paIdpzpa f1{p1]f2(pz)A (21)
(2r ) F(—E-)
It is not difficult to see that
1/2
_1 22,22.,22 4 4 4
8 =3 [Zp p1+2p1p2+2pap PP, P ] (22)

Eq. (21) can be considered to be an extension of Bochner theoren

to the convolution of two spherically symmetric functions.

If we choose to integrate first with respect to P,, We can write,

1 2 21172 2 2 is2
2=z [pa-(p-p,) ] [(p+pll -pz] (23)
So that
:«-2 _l (p+p1)
22 - 2 p2~v 2
- = —
£, (p)*f_(p) ——To-1 I“HPJ(H} J'dqutqlq[q
(2“) r —E—
tp-91)
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v-3 ) v=-3

i 2
'-(p-pl)z] [(p+piJ2-qa] } 4:_3_

where we took Iinto account that A=0 when P *P~P, OT P_EP+p.

If we take, for example, fz(p} equal to an arbitrary power of the

massless propagators, we have to evaluate:

2 y3 3
2 2
I = quz = [q”*az] [bz-qz] (25)
az q
or changing variable to x=q2-a
v-a® v =
I= Idx x 2 (x+a)? {bz-az-x] (26)

whose value can be found in ref. [7] p.287, 3.19-8. And so on.
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