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1. Introduction

The purpose of these notes is to give a brief and pedagogical account of the group-
geometric approach to (super)gravity and superstring theories. Full details can be found
in the book written in collaboration with R. D’ Auria and P. Fré {1]; here we summarize
the main ideas, and apply them to selected examples.

Group geometry provides a natural and unified formulation of gravity and gauge
theories. The invariances of both are interpreted as diffeomorphisms on a suitable group
manifold. This geometrical framework has a fruitful output, in that it provides a sys-
tematic algorithm for the gauging of Lie algebras, and the construction of (super)gravity
or (guper)string lagrangians.

The basic idea is to associate fundamental fields to the group generators. This is done
by considering first a basis of tangent vectors on the group manifold. These vectors close
on the same algebra as the abstract group generators. The dual basis, i.e. the vielbeins
(cotangent basis of one-forms) is then identified with the set of fundamental fields. Thus,
for example, the vielbein V* and the spin connection w* of ordinary Einstein-Cartan
gravity are seen as the duals of the tangent vectors corresponding to translations and
Lorentz rotations, respectively.

* Dealing with forms is particularly appropriate when having in mind to construct
integrands (lagrangians). Also, this formalism extends to p- forms (p > 1), and gives
an algebraic “raison d’ étre” to antisymmetric tensor fields as well. The relevant struc-
tures are the so-called free differential algebras [2,3,1] and generalize the Cartan-Maurer
equations of ordinary Lie algebras.

We set up the geometric framework in sections 2 and 3, and we apply it to the
derivation of D=4 gravity and supergravity lagrangians in sections 4 and 5. Section
6 is devoted to free differential algebras. By adjoining a fermionic (central) charge to
the Lie algebra G, we show in section 7 that BRST symmetry can be seen as a global
coordinate change in the fermionic direction. This is generalized to free differential
algebras, and provides a geometric rationale to the “russian” formula of Stora for the
BRST transformations of antisymmetric fields. Finally, section 8 contains the geometric
derivation of the type II superstring lagrangian in an arbitrary background.

Except for part of section 7, the material presented here is not new, and can be found
in the original references quoted at the end. We have tried to write a self-consistent review
and only elementary knowledge of differential geometry and group theory is assumed.

2. Group manifolds

Let us start from a Lie algebra Lie(G), with generators T4 satisfying the commuta-
tion relations
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(T4, T8) = C€ anTc (2.1)
A generic group element g € G connected with the identity * can be expressed as

g=exp(yTy) =y (2.2)

where y4 are the (exponential) coordinates of the group manifold. Each element of G
is labelled by the coordinates y“, and for notational economy we denote it simply by y.
Similarly yz stands for exp(yAT4)exp(z8Tp), the product of two group elements, and
by (y2)M we denote the corresponding coordinates.

Consider now (yz)™ as a function ** of z4:

wo)™ =y™ + e, M)zt + 08" (y)242% + ... (2.3)
For infinitesimal z:

- - - a
(ye)M = yM + (A )M = A+ 2%y, Ta=e, N (v)ga-ﬁ (2.4)

s0 that the {4 are a differential representation of the abstract generators 74, and satisfy
therefore the same algebra:

' [fa, 8] = CC apic (2.5)

The geometrical meaning of the components e N (y) in eq. (2.3) is clear: consider the
infinitesimal displacement §,y™ due to the (right) action of 1 4 ¢T4 (¢ = infinitesimal
parameter). Then

Say™ = ee M(y) (2.6)

and the dimG vectors e, M(y), A=1,...dimG are simply the tangent vectors at y in the
direction of the displacements 64y (see fig.1). It is customary to call tangent vector
along the T4 direction the whole differential operator 4 =€,V (y)a—;’y.

Note that e ,™ is an invertible matrix, since the map y — yz is a diffeomorphism.

group manifoid ¢

* Hereafter G indicates the part of the group connected with the identity.
** Since G is a Lie group, this function is smooth.
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The Z4(y) span the tangent space of & at y: they form a contravariant basis. The

“coordinate” basis given by the vectors ﬁv is related to the 14 (the intrinsic basis) via

the nondegenerate matrix e,”. The indices A,B,... are tangent space indices (“fat”
indices) and are inert under y coordinate transformations. The indices M,N,... are
coordinate indices (“world” indices) and do transform under coordinate transformations
in the usual way (see later). Next we define the one-forms o4(y) as the duals of the f4:

oA(Tp) = 68 (2.8)

The 04 are a covariant basis (the intrinsic vielbein basis) for the dual of the tangent space,
called cotangent space (the space of 1-forms). The “coordinate” cotangent basis dual to
the a_:N' vectors is given by the differentials dyM (dy™ (-8-%) = 6¥). The components of
o4(y) on the coordinate basis are denoted e,/(y): A/

ot(y) = ex*(v) dy™ (2.9)

From the duality of the tangent and cotangent bases we have:

er’ eg™ = 68
esM eyt =Y (2.10)

Exercise 1: Substitute eq. (2.7) into the commutator (2.5) and find the differential
condition on e AM (v):

—2e4 ™ epMOnep” = CCun (2.11)

Exercise 2. compute the exterior derivative of 04 using eq.s (2.9) and (2.11) and
find

dot + %C" BcoP A€ =0 (2.12)

These are called the Cartan-Maurer equations, and provide a dual formulation of Lie

algebras in terms of the oneforms o4. It is immediate to verify that the closure of

the exterior derivative d (d2 = 0) is equivalent to the Jacobi identities for the structure
constants:

C45cC%pry =0 (2.13)
(apply d to eq. (2.12)).

Note

Defining o(y) = 04(y)Ta the Cartan-Maurer eq.s (2.12) take the form
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doe+ocAho=0 (2.14)

The Lie-valued one-form o(y) can also be constructed directly from the group ele-
ment y:

o(y) =y 'dy (2.15)

It is easy to verify that (2.15) satisfies the Cartan-Maurer equation (2 .14) (use
dy~! = —y~'dy y~'). Moreover, it takes the same value as e, AdyM T4 at the origin
y = 0. Indeed from the definition of e, in eq. (2.3) one sees that e, M(y = 0) = §¥,
and therefore e,A(0)dyM T4 = dy? T4. This value coincides with ¥ ldy|y=0 since
¥ !ly=0 =[group unit], and dy|,—o = dyAT,4 (from (2.2)). This observation suffices to
conclude that y~'dy is equal to e,A(y)dyM Ta.

3. One-forms as dynamical fields

Consider a smooth deformation & of the group manifold G'. Its vielbein field is given
by the intrinsic cotangent basis, defined for any differentiable manifold:

pA(y) = pp (y)dy™ (3.1)

In éeneral u? does not satisfy the Cartan-Maurer equations any more, so that
1
dpA + ECABQ(JB A pc = R4 #0 (3.2)

The extent of the deformation G — G is measured by the curvature two-form RA.
RA = 0 implies p4 = 04 and viceversa.

Applying the external derivative d to the definition (3.2), using d> = 0 and the
Jacobi identities on C4 ¢, yields the Bianchi identities

(VR)A =dRA - CAgcREAUC =0 (3.3)

The main idea is to consider the one-forms y“(y) as the fundamental fields of our
geometric theory. The deformation G — @ is necessary in order to allow configurations
with nonvanishing curvature. 3

As a first example, consider G= smooth deformation of the Poincaré group, whose
structure constants are read off the corresponding Lie algebra :

[Pda Pb] =0
[Maba Mcd] = '?adec + MyeMad — nachd — Npa M. (34)
[MuhPc] = qbcPa - ’?ach

Denoting by V* and w"® the vielbein u# when the index A runs on the translations
and on the Lorentz rotations respectively, eq.s (3.2) take the form:
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R® = dv* _wcl A Vc’?bc

35
Rab — dwcb — WOt A wdbﬂcd ( _ )

The fundamental fields V* and w*® are interpreted as the ordinary vierbein and
the spin connection, respectively, and eq.s (3.5) define the torsion and the Riemann
curvature. These satisfy the Bianchi identities™*

dR* + R*V® —w*R' = DR* + R*V* =0

3.6
anb + Racwcb - wacRcb =DR*® =0 ( )

where D is the Lorentz covariant derivative, and repeated indices are contracted with
the Minkowski metric n,;.

How do we find the dynamics of u4(y) ? We want to obtain a geometric theory,
i.e. invariant under diffeomorphisms of the soft group manifold G. We need therefore
to construct an action invariant under diffeomorphisms, and this is simply achieved by
using only diffeomorphic invariant operations as the exterior derivative and the wedge
product. Our building blocks are the one-form u4 and its curvature two-form R4, and
exterior products of them can make up a lagrangian D-form (where D is the dimension
of space-time, see later).

An immediate problem presents itself: the fields u4(y) depend on all the soft group
manifold coordinates y. In the Poincaré example, this means that the vierbein and the
spin connection depend on the coordinates y* associated to the translations (the ordinary
space- time coordinates) and on the coordinates y*® associated to the Lorentz rotations.
Since we want to have space-time fields at the end of the game, we have to find a way to
remove the y*® dependence. This is achieved when the curvatures are horizontal in the
y** directions, as we explain below.

First we discuss the variation under diffeomorphisms of the vielbein field p4(y):

pA(y + 8y) — pA(Y) = Slupty)dy™] =
= (Ovpa) Sy dy™ + up (OnéyM)dy” =

3.7
= dy" [Onby* + Sy™(Bupn® — Onup)) = ®7)
= déy* - 2u7 6y (dp*)pc = d(igu?) +igdpt

where
Sy* = syMups, by =6yMou, dpt = (dpt)acu® A LS, (3.8)

and the contraction i; along a tangent vector ¢ is defined on p-forms

* products between forms are understood to be exterior products. The wedge symbol
A is omitted in the following
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W(p) = wBl,,.B,,uB‘ ALLA ,uB’

i wip) =p thwaB,. B, " A A pPr (3.9)
Note that :; maps p-forms into (p — 1)-forms. The operator

le=di;+ipd (3.10)

is called the Lie derivative along the tangent vector { and maps p-forms into p-forms.
As shown in eq. (3.7), the Lie derivative of the one-form u4 along &y gives its variation
under the diffeomorphism y — y + 8y. This holds true for any p-form.

We now rewrite the variation §u? of eq. (3.7) in a suggestive way, by adding and
subtracting C4 gou® 6y€
épt = déy* + C4pouP 6y — 2uP6y°(dp*)sc ~ CApou®6y°
= (Véy)* +i5 R4
where we have used the definition (3.2) for the curvature, and the G-covariant derivative
V acts on §y* as

(3.11)

(Véy)t = du? + C4 po Byt (3.12)

All the invariances of our geometric theory are contained in eq. (3.11). In particular,
suppose that the two-form R4 = RAgcu® A uC has vanishing components along the
directions of a subgroup H of G:

A runson G
R4u =0 Hrunson H (3.13)

Then we say that R4 is horizontal on H, and the diffeomorphisms along the H-directions
reduce to gauge transformations:

Sut(y) = (Véy)* (3.14)

Moreover, the dependence on the y* coordinates becomes inessential, in the sense
that it factorizes after a finite gauge transformation. Indeed, let us examine eq. (3.14)
in more detail: separating the H-indices and the K-indices (those along the directions
of the coset space G/H) we have *

* we recall that for semisimple Lie algebras (or direct products of semisimple Lie
algebras with U(1) factors) it is always possible to find a tensor transformation on the
generators T4 — S4T8 such that the Killing metric gap = C%p CB becomes
diagonal. On this ba315 G/H (for any H) is reductive, i.e. the structure constants CH, .
vanish. Indeed CH 31 i 18 proportional to Cyg i = Cx g = 0 (indices are lowered with
the Killing metric, and C4pc is totally antisymmetric because of Jacobi identities).
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SuH = doy® + CHyp g ¥ Sy

(3.15)
§p¥ = C¥pr g™ Sy

for diffeomorphisms a]ong yH. These equations have the typical form of gauge variations
of the H-gauge field u¥ and of a field pX transforming in a representation (Tg)X K =
CXp i of the subgroup H. Tt is clear that invariance of the theory under (3.5) reqmres
the field u¥ to appear in the action only through the curvatures R4, whereas “naked” u
can appear since they do transform homogeneously. A finite H-coordinate transformatlon
can be used to remove the yH dependence in the objects appearing in the action: for
example by integrating the second equation in (3.15) we find

uX (¥, y7) = DKy (v%,v" = 0) (3.16)

where D, P is the adjoint representation of G, so that the whole dependence on yH
contained in the D matrices. If invariant H tensors are used to contract indices in the
lagrangian, the adjoint D matrices cancel out, and the fields really live on the coset space
G/H. The theory "remembers” the invariance under y*-diffeomorphisms by retaining
the gauge invariance under H (eq.(3.14)), with §y¥ interpreted now as a gauge parameter.
This mechanism is llustrated in the examples of next sections.

+ In Poincaré gravity, we have horizontality of the curvatures along the Lorentz direc-
tions (see next Section): then the fields V* and w?® live on the coset space

G _ Poincate’
H  Lorentz
i.e. on ordinary spacetime. The lagrangian is integrated on a D- volume (D-dimensional

spacetime)}, and is therefore a D-form. The resulting theory is invariant under D-
spacetime diffeomorphisms, and under local Lorentz rotations.

(3.17)

4. Poincaré gravity in D=4

From the discussion in the preceding section, we know that the lagrangian must be
a 4-form, and therefore at most quadratic in the curvatures:

£=A® 44D 4 %RARBVE&); + total differential (4.1)

with the group index A splitting into A = ab,a. The cosmological term A and the v
terms are exterior polynomials in the y4 = w*, V* group vielbeins:

A(4) = CABCD ﬁAﬂBﬂcﬂD

= Capq u°p° (4.2)

Vfu); =Cap
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The constant coefficients C in (4.2) are Lorentz invariant tensors (since we want a Lorentz
invariant theory, see preceding section) .

The terms quadratic in the curvatures can be dropped: indeed they are equivalent
to total differentials+terms linear in R4, To prove this, we observe that the only Lorentz
invariant tensors of the type v4p are:

Cab,cd = €abed

L] 1 -]
C’uﬁ,cd = aellbf 6.;.{ = ’?ae’?bfi(aca{ - 6{6:) (43)
Cu,b = '?acfsf
and therefore
RARBYY) = ¢, R** R*%apca + c2 R**R*®® + ¢3R*R® (4.4)

The first two terms are closed forms:

d(R“"R"de,qu) = D(RabRch“cd) =0

d(RabRab) — D(RabRab) =0 (45)

because of Lorentz invariance and of the second Bianchi identity in (3.6). The two terms
are then locally exact, indeed:

R“Rc‘isabcd — d(ecbcd w“"R“f — Eabed wa!wlbwcd)
(4.6)

RabRab = (wabRab _ %w!aw!mwma)

Their spacetime integrals give topological numbers, respectively the first Pontriagyn
number and the Euler characteristic of the 4- dimensional spacetime manifold. For the

last term in (4.4) we have:
R°R* = DV* DV* =D(V*DV*)+ V*DR® = 1)
=d(V*DV*) + V*(-R*V?) '

and therefore can be reduced to a term linear in R®® plus a total derivative. Thus the
most general lagrangian is at most linear in the curvatures:

L = otapea VOVIVVE 4 Bt dRPVVE 4 yRPVEV? (4.8)

Note that w®® can appear only through the SO(1,3)- covariant curvature R** (local
Lorentz invariance).

A simple scaling consideration allows us to discard the first term (cosmological term)
in (4.8): the curvature definitions (3.5) and the Bianchi identities (3.6} are invariant under
the rescaling:

Ve =5 AV% R — AR (4.9)
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A theory based on the algebraic structure encoded in (3.5-6) must have the same rescaling
invariance. In other words, the lagrangian must scale homogeneously under (4.9). The 8
and ~ terms scale as A2, whereas the cosmological term scales as A* and has therefore to
be dropped (alone it would lead to the drastically simple field equations V* = 0). Note
that the same scaling argument could have been used for the first two terms in (4.4).

This argument does not mean that we cannot describe gravity with a cosmological
constant. This can be done starting from a different Lie group, namely the de Sitter
50(1,4) or anti de-Sitter SO(2,3) group.

Another criterion we may use in building lagrangians is the requirement that the
vacuum {defined by R4 = 0) be a solution of the variational equations.* This again rules
out the cosmological term in Poincaré gravity (but not in (anti) de-Sitter gravity).

The last two terms in (4.8) have opposite parity and cannot coexist in the same
lagrangian. The field equations from the v term, obtained by varying in V* and w*®
read:

R®*Vve =0
RV -RVe =0
and are identically satisfied by R® = 0. The curvature R®® remains free, since the first

equation in (4.10) is simply equivalent to the first Bianchi identity in (3.6) when R* = 0.
This choice does not lead to any dynamics.

(4.10)

‘We are thus left with the Cartan-Einstein action:

A= | R*®VVi%,id (4.11)
M4

where the integration is on Minkowski spacetime M* C [smooth deformation of the
Poincaré group). By excluding bare w?® in the lagrangian we have ensured the horizon-

* We can justify this as follows. Suppose that the vacuum is not a solution. Then
we have two cases: either there are no solutions at all or there is a solution of the type
RA = 1F4 ct® ,uc where F/ are constants. Indeed the field equations are algebraic
equatlons for RA; - (with constant coefficients: cfr. for example the field equations

6‘:‘5 derived from (4 1,2)) and therefore either have no solution or have also constant

solutions. Bringing 3 LFA4cuBuC to the left hand side of the previous equation we see
that the constant curva.ture solution is given by the zero curvature of a new group whose
structure constants are 4, — F4 B These satisfy J a.cobl identities (to see this substitute
in the Bianchi identity (3.3) for R4 its value 7 F'4;u? 4€, and use the definition (3.2) to
eliminate the derivative du? ) and are therefore “bona ﬁde” structure constants. Then
we could consider the lagrangian based on this new group, whose field equations would
now admit the zero curvature solution. Hence there is no loss of generality in requiring
RA = 0 to be a solution of the variational equations.
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tality of the curvatures in the Lorentz directions. This will be verified in the variational
equations for the action (4.11).

Contact with the usual Einstein action is made as follows:

L = R (w)VV%%pca = R,V VIVVic,y0y =
= R* [ V,*V,7V,°V, %capea dz*dz’dz?dz” = R®,;V,*V,TV,V, %capcq €***d*z =
= R“"ef gefed Eabed detVdtz = —4R“°¢5\/—gd4:r

(4.12)
where we have used the horizontality of the Lorentz curvature.
Variational equations
6 -
61:1 =0=> R*®VC 4.4 =0 (4.13a)
§A
o =0= RV 44 =0 (4.138)

To examine their content, first expand the curvatures R4 = (R®, R*®) on the complete
basis of 2-forms p# A uB:

R* = RA5ouPu® = RA,V*V* + R4, , Vo + RA ab,cd Ww™ (4.14)

Projecting the 3-form equations (4.13a) on independent components of the complete basis
2 A pB A u€ we find the three equations:

R, VVIVegpea =0 (4.15q)
R®, ,, Ve Ve =0 (4.155)
R®, o w WtV =0 (4.15¢)

From the first equation, after setting

Vevive = gcfaq, (4.16)
we retrieve the Einstein equations:
1
R ctfeteyy 9= 31 6{IR™, , =0 R*, — S0 R = (4.17)

The other two equations (4.15b,c) imply the horizontality of R%, as anticipated:

R®, ; =R, ;=0 (4.18)
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With similar considerations we find that the torsion equation {4.13b) yields horizon-
tality conditions on R*, and R%, = 0. These constraints, arising as field equations, are
summarized by the zero-torsion condition:

R* =0 (4.19)

i.e. the torsion vanishes as a two-form on the whole soft group manifold. Eq. (4.19)
can be solved for the spin connection in terms of the vielbein, its first derivatives and its
inverse:

w”ab = (QAIJw + Qu|ip — inw\)vc *Vd vqacqbd (420)

where
Daer = VA* 8V, e (4.21)

(expand R* = dV*® —w®*V? = 0 in the coordinate basis dz* A dz¥, multiply by a vielbein
facV,° and sum cyclic permutations in the curved indices with signs + + -).

Inserting w*® as given in (4.20) into the Einstein equation (4.17) which is of first
order in derivatives of w®®, we obtain a second order equation for the vielbein field. The
conclusion is that starting from the Cartan-Einstein action (4.11), the propagation of the
vielbein field is obtained via the torsion mechanism R* = 0, allowing the elimination of
the spin connection in terms of V,*, the only physical (propagating) field.

Symmetries

The symmetries of Poincaré gravity are given by the diffeomorphisms on the Poincaré
(soft) group manifold. Applying the general formula (3.11) with

6; == 6“64 + gaba"b
we find

§.V* = (Ve)® +i,R® = De® + e}V? (4.22a)
bow® = (Ve)®® + i, R = De®® 4 2:°V4R (4.225)

We have used R® = 0 in the first equation. The reader may verify as an exercise that the
variation of V? in {4.22a) induces precisely the variation (4.22b) for the spin connection
given by eq. (4.20) in terms of the vierbein field.

Diffeomorphisms along Lorentz directions (¢* = 0) become local Lorentz rotations
gauged by the spin connection. Diffeomorphisms along the translations (¢2® = 0) give
the usual variations of V@ and w®® under general coordinate transformations. Actually
for the vierbein field this is true modulo a field dependent Lorentz rotation. Indeed from
eq. (4.22a) we find the variation of the vierbein components:
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5.V,

W = Du(V,%e”) = (60 + w0, )V, be") =
=(DuV,%)e" +V,%0ue, =(D,V," =D, V,%)e" + DV, %" +V,%0,e" = (4.23)
= (D,V,%)e” +V, 8,6 =(8,V,*)e” +V,%0u6” +w,**V, ¢
(use DV, * — D, V,* = 0 because of the zero-torsion condition R* = DV* = 0. Note
that the final expression for 6.V, * does not change when R* 5 0: then the covariant curi
of V,* cancels with the R* term in (4.22a)). This reproduces the usual transformation

law plus a Lorentz rotation with field dependent parameter £“w,?®. Since the theory is
separately invariant under local Lorentz rotations, the usual transformation of V,* is a
symmetry, as it should.

5. D=4, N=1 supergravity

This section supersymmetrizes the previous one. D = 4, N = 1 supergravity is based
on the superPoincaré Lie algebra:

[Pa, 5] =0 (6.1)
[Mas, Med] = NaaMic + NpcMad — acMsa — 15aMac (5.2)
[Mah Pc] = MpePs — Nac P (53)
(Mo, Q) = %Qu("{nb)aﬁ . (5.4)
{Qm Q,a} = 5(076)0,813& (5.5)

where the supersymmetry charge Q, = QL(W)&. is a Majorana fermion:

@-Q%C, C = charge conjugation matrix (5.6)

Greek indices are spinor indices.

We write the Lie-valued one-form of eq. (2.14) as

1 _
o(y) = oAy = Ew“bMaa; + VeP, 4+ Qv (6.7

and we use the notation (V*=vierbein, w®*=spin connection, 1*=gravitino) also for the
vielbein u? of the soft superPoincaré manifold. Then the curvature definitions (3.2) take
the form

R* = dv® — Vb %%w (5.8a)

R® = dw® — oo (5.8b)
1

p=df - Zw“b%uﬁ =Dy (5.8¢)
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and the corresponding Bianchi identities are

DR® + RV — ify®p =0 (5.9a)

DR** =0 (5.95)
1

Dp+ ;R aitp =0 (5.9¢)

Eq.s (5.8,9) are invariant under the rescaling:

Ve = AV = VI (= R* — AR%; p - V) (5.10)

The fields depend in principle on the coordinates z*, z* and 6 (this last being
a fermionic coordinate corresponding to the supersymmetry generator @, ) of the soft
superPoincaré group manifold. Horizontality of the curvatures in the Lorentz directions
will remove the z%® dependence, as in Poincaré gravity, and ensure local Lorentz invari-
ance. How about the dependence on § ? This translates into new degrees of freedom
when expanding u4(z, #) in series of the anticommuting 8.

Notice that here we do not need superfields, i.e. fields living in the superspace
(z®,8%), whose expansion in the anticommuting 8 yields a supersymmetric multiplet (for
ex. the vielbein and the gravitino). Indeed we already have both the vielbein and the
gravitino as part of the same superPoincaré vielbein ! The dependence on 8 is therefore
redundant in our framework and we must find a way to dispose of it.

This is done by a mechanism which resembles horizontality, but is a weaker require-
ment on the curvatures, called “rheonomy”. It simply consists in having curvatures with
outer components (i.e. components in the # directions) expressible as linear combinations
of inner (or spacetime) components:

RAaA = Cﬁﬂ%"Rﬁv {5.11)
If this happens, the purely spacetime configuration (u,4(z,0), d,4,(x,0)) determines
the extension of p,A(z,0)dz” to the whole superspace:
p(z,0) = u,A(z,0)de” — uA(z,0)dz" + pA(z,0)ds" (5.12)
Proof: consider formula (3.11) for a diffeomorphism 8 — 8 + &(z, 9) :

PA("“:! f=¢)= PA(x$0) + (VS)A + 2E_GR‘LA(:C, O)dyA =

= (2, 0) + 5 0nedy™ + Chon® (2,006 + 28%C4, |5 RE, (2, 0)dy*
(5.13)
where we have used the rheonomy condition (5.10), and dy* = (dz*,df#®). Since the
spacetime components of the curvature are given by
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1
R, = &uuy* + 5C%son,”w° (5.14)

we see that , by integrating eq. (5.13), we can reconstruct the whole superspace vielbein
from the knowledge of its spacetime restriction p, A{z,0) and the spacetime derivatives

dut,(z,0) appearing in (5.14).

This is the solution to our problem: the unwanted extra degrees of freedom in u4

due to its # dependence (i.e. the fields appearing in the 8 and d expansion of u4(z, 8))

are not really independent and all the physical information resides in the spacetime field
(x,0). If eq. (5.10) (rheonomy) holds, we can rewrite the transformation (5.13) as

beph(2,0) = 628,e%dz* + C4, 4B (2,0)e™ + 26°C4 % RE (2, 0)u"(2,0) (5.150)

or in components:

Seps, A(z,0) = 629, + C4 c,,,u‘,,“l“?(.;r:,O)es“'+26""’(3”3,“,9|"f,”l‘lffu,(_:r:,O)pm‘r"(z:,{)) (5.15b)

and consider it as a symmetry between purely spacetime fields u;4(,0) (supersymme-
try), with £(z)® as fermionic infinitesimal parameter. By construct:on the soft group
manifold action is invariant under the supersymmetry (5.15), since it is invariant un-
der the superspace diffeomorphisms (5.13) reducing to (5.15) when the curvatures are
rheonomic. Then, if we restrict this action on spacetime (setting 8§ = 0, d6 = 0 in the
lagrangian D-form, and integrating on spacetime), the supersymmetry variation (5.15)
is still a symmetry, transforming spacetime fields into spacetime fields. This is how we
arrive at spacetime supersymmetric actions.

Note 1: the rheonomy property (5.10) does not depend on the particular basis chosen
for the 1-forms. The indices a, A in (5.10) are curved indices, but an analogous relation
holds for the flat components (i.e. the components along the vielbein basis u4).

Note 2: there is an interesting analogy between analiticity and rheonomy:

vielbein « analytic function
superspace « complex plane
spacetime « real line
Cauchy — Riemann conditions «+ rheonomy conditions
so that rheonomy can be seen as a kind of analiticity in superspace.
Let us now return to our specific example of N=1 supergravity in D=4. The most

general lagrangian 4-form is of the type (4.1). We have five possible terms quadratic in
the curvatures:
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RARB vg = 1 R*® R g4ca + cs R**R*® + c3 R°R* + caPp + cspysp (5.16)

The first two are total derivatives as in the gravity case (4.6), since the definition of R}
is the same. The last three can be reduced to linear terms in the curvatures plus total
derivatives. Actually the scaling invariance of (5.10) eliminates all the terms in (5.16)
except R®R®, since the Einstein term (4.12) scales as A2, The torsion-squared term can
be reduced to a linear term since

R°R® = (DV*® — %J,qw)m = d(V°R®) + V*(~R**V?® + ifhy°p) — %%wm (5.17)
in virtue of the Bianchi identity (5.9a). This leaves us with a lagrangian of the form:

L=A+vaR® +v,R* +0p (5.18)

where

A = a16a5cdVEVAV VY 4 iageapcapy PV VY +iagdy Py VeV?
Vab = Pr1€abedVVE + B VAV +ifsthvasth + iBucascapr e

Va = imPya

v =877V + ibv V"

(5.19)

are the most general Lorentz covariant terms. Notice that the only nonvanishing ¥y
currents are ¥y% and $7°% (' and ¢ commute since they are fermionic one-forms).
Correct A? scaling of £ under (5.10) drastically reduces the possible terms: a; = ag =
a; = B3 = B, = 0. Moreover parity conservation implies 8, = 5, = §; = 0 (all
terms must have the same parity as the Einstein term R®*V°Vie 3.4, i.e. must be
pseudoscalars). Thus we finally have:

L= BleabcdRachVd + 61';75711»}(’1/“ (5.20)

The requirement that the vacuum be a solution of the field equations fixes the last
parameter ¢ = 61 /5;. Indeed the field equations obtained by varying (5.20) in the fields
Ve, w4 are respectively:

2R*®V e peq + aPys7ap =0 (5.21a)
1 -

2DV*V cared + 09170749V = 0 (5.21b)

2a757.pV" — av57.pR" =0 (5.21¢)
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To find the first is immediate; for the second we only have to recall that varying w®®
in R°® yields §R*® = D(6w"?), and that by integrating by parts the Lorentz covariant
derivative D can be transferred on V*°. Finally for the gravitino variation we have
1 _ _
;65 = a(§¥)1s7a DYV’ + apysv.D(6Y)V* =
= (69)157a DYV + 9157 6¢DV® + Sbys 1. DYV =

~ _ ~ (5.22)
= (8¢)157.DYV* — éps1ath(R* + %f.b'r"#) =
= (6'5)(2757-1&%‘,‘ -7 Y R?)
in virtue of ¥ysy.(8%) = (6% Vysv.¥ and the Fierz identity
Yoy = 0 (5.23)
Note that using the gamma-algebra identity:
V5¥aYab = 27584(aVs) — i€abed?” (5.24)
the variational equation (5.21b) can be recast in the form:
1 -
2R V%%,4ca + Z(a - 4)¢751d7¢5¢Vd =0 (5.25)

so that the vacuum, defined by vanishing curvatures, is a solution of the field equations
(5.21) only if a = 4. :

Analysis of the field equations
Let us find what are the constraints on the curvatures due to eq.s (5.21) with a = 4.

For short, we refer to these equations as a), b) and c), respectively. We expand the
curvatures on a complete basis of 2-forms:

R® = R, .V Ve +0° vV + YKy (5.26a)
R = R® VeV 4§ yV° + g K% (5.265)
p=pas VeV + HpV® + Qappp®y? (5.26¢)
where 8°%, 2 are spinor-tensors, K*® = —K®% K* and H_ are 4 x 4 matrices in spinor

space, and the 4 x 4 matrix {3, is a Majorana spinor. Inserting the parametrizations
(5.26) for the curvatures into the field equations a),b) and c} yields in the various sectors:

i) sector:
a) = Qap =0
c)=> K*=0
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Y9V sector: _

a) = 20K** WV eapca + 4PysvaH PV =0
b)= 0=0

)= 6% =0

YV'V sector:

av) = 2§nb¢¢'vevc€abcd + 4'!;1'57dpabvavb =0
b= 0=0

c) = 1Y HypVPVe — dygy Yy RS, VoV =0

VvV sector:

a) = Rab

b) = R*S, 6§R° d =
C) = 757115’&(:5“ bed - ={

The last VVV sector contains the propagation equations (Einstein and Rarita-
Schwinger equations). The other sectors determine the “outer” components of the cur-
vatures. Indeed using R%, = 0 into the last of V'V eq.s yields H, = 0, which inserted
into the first of the ¥V eq.s implies K = 0. The only nontrivial relation is the first
of the ¥ V'V sector:

(8°%,°°% e apea + 2Barrsvae™ " Wl = 0 (5.27)

where we used for the area element V°V?® = e“bch cd- Carrying out the ¢ contractions
leads to:

8%, + 2601+ e®p, ysya = 0 (5.28)

Contracting in the indices b and d yields 8%, = “bc"pcnwb, which substituted into
(5.28) finally gives:

@clbe —_ abcdp 4V Ye — 6[5 ﬂcdfﬂaﬁs‘? (529)

In summary, the field equations deduced from the supergravity lagrangian

£ = €4pcaR®PVVE 4 4hy57,pV° (5.30)

have determined the curvatures:

R® = R* VoV + (- bearsre — 80N papysre )y Ve (5.31a)
R*=0 (5.31b)
p=paV?® (5.31¢)

where the spacetime components R*® ; and p,; satisfy the propagation equations found in
the VVV sector. As we see from eq.s {5.31) the curvatures are rheonomic, i.e. their outer
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components (the only nonvanishing outer components are those of R®®} are expressed
in terms of inner ones (here in terms of ps3). Then the # diffeomorphism invariance
of the superspace lagrangian (5.30} become spacetime supersymmetry of its spacetime
restriction, as explained in the previous paragraphs. Inserting the curvatures given in
eq.s {5.31) into the general formula (3.11), with 6§y = ¢ a generic tangent vector of the
soft superPoincaré group manifold

£ =88y +6%8, + %0, (5.32)

we can deduce the transformation laws:

Ve = (Ve)® = De® + VP +izy%y (5.33q)
bew® =(Ve)** +i R®*=
De®® + 2w + b0 + 26°VIRY ; + 20°% pe® + 20°% Ve (5.33D)

Sp=Vv+ip=De+ %s“"%;,gb + 262 pas V' | (5.33¢)

with 8%% given by (5.29). On the spa.cetlme restriction of the D=4 N=1 surgravity la-
grangian, the above transformations are interpreted as ordinary D=4 diffeomorphisms
with parameter £%, supersymmetry variations with parameter £ and local Lorentz rota-
tions with parameter £

These symmetries are really on shell symmetries of the supergravity action, since
in deducing the transformations (5.33) we used the the curvatures given in eq.s (5.30),
obtained via the field equations. Of course, one could use the general parametrization
of the curvatures (5.26) instead, and the resulting variations obtained through formula
(3.11) would then be totally off-shell, the price being the introduction of extra auxiliary
fields (the outer components of the curvatures).

Note: The Einstein equation

¢ (w) - -5,, R j(w) = (5.34)

deduced from (5.25) with @ = 4, is formally the same as in ordinary gravity. However,
the spin connection w is different. To find it, we solve the zero-torsion constraint (5.31b)
as we did for ordinary gravity, and find:

ab_‘:’nb

wt=w, +Aow® (5.35)

oab
where & is the usual Riemannian spin connection (4.20) and

Aw;b = %($ﬂ7h¢v + %A'Yv'!’pl lbv'hs'pba\ (Ao )V, xV "n%n b (5.36)
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Substituting (5.35) in the supergravity curvatures:

R*®(w) = R®(w + Aw) = R®*(@) + D(©0)Aw®® — Aw**Aw®? (5.374:;.)
p = D{w)p = D(& + Aw) = DS — %Aw‘_"%w (5.375)

the spacetime field equations read:

or 1
He(w) — 555 R (@) + T4(%) (5.38q)
87572 Dy (0)1e£? = 2957 Aw™ 7, p1pec e (5.38b)

where

W¥) = Deduwy) — Awf A i]__{ab De(w)Aw — A Aw™,] (5.39)

is the energy momentum tensor of the gravitino field.

6. Free differential algebras

The dual formulation of Lie algebras provided by the Cartan-Maurer equations (2.12)
can be naturally extended to p-forms (p > 1):

d"(p)“‘z =C' i 8t A ABR =0, p+l=pi1+..+pn (6.1)

P, P1,.--Pn are, respectively, the degrees of the forms 8% 0%,..., 8% the indices 3,11, ..., 15
run on irreps of a group G, and C’,1 i, are generalized structure constants satisfying
generalized Jacobi identities due to d* = 0. When p=p1 =p2 =1 and ¢,i;,i3 belong
to the adjoint representation of G, eq.s (6.1) reduce to the ordinary Cartan-Maurer
equations. The (anti)symmetry properties of the indices ij,...i, depend on the bosonic
or fermionic character of the forms 8%, ...6

If the generalized Jacobi identities hold, eq.s (6.1) define a free differential algebra
[2](FDA). The possible FDA extensions G' of a Lie algebra G have been studied in ref.s
[2,3], and rely on the existence of Chevalley cohomology classes in G [5]. Suppose that,
given an ordinary Lie algebra G, there exists a p-form:

Qoy(0) =@y, 4,0 A Ao, @, , =-constants, i runsona G —irrep (6.2)

which is covariantly closed but not covariantly exact, i.e.
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] —_— i A ] ] _ i ]

Then Q‘(p) is said to be a representative of a Chevalley cohomology class in the D* 5 irrep

of G. V is the boundary operator satisfying V2 = 0 (it would be proportional to the
curvature 2-form on the soft group manifold). The existence of {* ) allows the extension

of the original Lie algebra G to the FDA G':

do? + %CABC‘O'B Ac€ =0 (6.4a)
VE g1y + Dipy(0) =0 (6.4b)

where E(p_l) is a new p — l-form, not contamed in G. Closure of eq.s (6.4) is ensured
because Vi, = 0.

It is clear that Q(p) differing by exact pieces V@(p—l) lead to eqmva.lent FDA’s, via
the redefinition E( p—1) — 2( p=1) +'I)( p—1)" What we are interested in are really nontrivial
cohomology classes satisfying eq.s (6.3).

The whole game can be repeated on the free differential algebra G' which now
contains o4, Z(p—1)- One looks for the existence of polynomials in o4, E;’_l)

(D) = Q4 oM A AT ATE AL AT (6.5)

{(r-1)

satisfying the cohomology conditions (6.3). If such a polynomial exists, the FDA of eq.s
(6.4) can be further extended to G, and so on.

In constructing D-dimensional supergravity theories we usually choose as starting
point the superPoincaré Lie algebra, whose dual formulation is given in eq.s (3.4). The
possible G' extensions to FDA’s depend on the spacetime dimension D. For example
in D = 11 there is a cohomology class of the superPoincaré algebra in the identity
representation:

1-
UV, w, ) = Z9T**pVeV? (6.6)
d{} = 0 holds because of the D = 11 Fierz identity
preby prey Vet =0 (6.7)
This allows the extension of the algebra (3.4) by means of a three -form A:

dA — QV,w, ) =0 (6.8)

Note Only nonsemisimple algebras can have FDA extensions in nontrivial G-irreps. In-
deed a theorem by Chevalley and Eilenberg [5] states that there is no nontrivial coho-
mology class of G in nontrivial G-irreps when G is semisimple.



CBPF-NF-022/91

=21~

As we have done in the case of ordinary Lie algebras, we find a dynamical theory
based on FDA’s by allowing nonvanishing curvatures. This means, for example, that
D = 11 supergravity is based on a deformation of the fields V w,, A such that the
superPoincaré curvatures and the A-curvature of (6.8) are different from zero. The
construction of the action proceeds along the same lines outlined in section 4, and we
refer the reader to refs. [1,3]. Other theories containing higher forms (i.e. antisymmetric
tensors) have been interpreted as gaugings of free differential algebras: we refer the reader
to ref.s [1,3] for a detailed study of these theories.

7. BRST geometry

In this section we provide a geometric interpretation of BRST symmetry {6]. The
basic idea is to enlarge with an extra grassmann coordinate @ the group manifold G of
the original theory, be it a gauge, a (super)gravity or a (super)string theory. Adding 8 to
the spacetime coordinates was already considered in refs. [7-8], and indeed in this way
one achieves a superspace formulation of BRST invariant theories. Here we want to take
a step further, and consider the theory as living on the enlarged group manifold G +
Q, obtained by adding a fermionic central charge Q to the original group generators T4,
satisfying @? = 0. This is, in our opinion, the natural geometric arena of BRST-invariant
theories. Also, our formulation is easily extended t{o describe the BRST structure of
theories containing antisymmetric tensors. In this case, the relevant geometry is that of

an enlarged free differential algebra FDA + Q.

BRST symmetry is a global fermionic symmetry. Global symmetries are described
in our formalism by rigid translations along some group manifold coordinates yZ. Also,
the would be gauge potentials associated to the corresponding generators T become
pure gauge, and thus effectively disappear from the theory, if one imposes RE = (.

In the case of BRST symmetry, we assume therefore that the Q-curvature R[Q)]
vanishes. Moreover, in order to remove the #-dependence in the fields of the theory, we
impose the horizontality constraints:

RAsc = RAcg = RAgg =0 (7.1)

The enlarged Lie algebra we start from is given by the (anti)commutations:

[T4,Ts] = C°4Tc
[T4,Q)1 =0 (7.2)
{@.Q}=0

Using the structure constants of (7.2) in eq. {3.2), we find the curvature definitions:

R[Q] = dulQ]

(7.3)
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where u[Q] is the potential corresponding to Q. The Bianchi identities are:

dR* - C*pc REApC =0

7.4
dR[Q) =10 (7.4)

Note that the horizontality constraints in eq. (7.1) and the "rigidity” constraint
R[Q]1=0 (7.5}

are consistent with the Bianchi identities (7.4).

Our claim is that the gauging of the extended Lie algebra (7.2), supplemented with
the constraints (7.1) and (7.5), yields a BRST-invariant theory. The proof is simple.
First we expand the vielbein one-form y on the basis of differentials (dy®, d6):

pA,0) =pl dy* +pf db=pl dy* + g% do (7.6a)
#Q) (v, 0) = p[Qla dy™ + u(Qle do (7.6b)

¢[Q] being a pure gauge because of eq. (7.5), we will concentrate on the transformation
laws for u#. Note that in eq. (7.6a) we have renamed g4 the df component of u4. The
reason is that the fermionic zero-form g# will play the role of the ghost field associated
to the gauge potential u2. Thus, gauge fields and ghost fields are parts of the same
fundamental field u4.

Consider now the general formula (3.11) for all the symmetry transformations of the
theory. The coordinate variation 6y has a flat {adjoint) index A, and can be expressed
in terms of coordinate variations with curved indices as:

by =5yl + 60 pug (7.7)

Let us specialize the variation (6y®,66) to describe a rigid translation in the 8
direction. Then éy* = 0, 6 = constant and eq. (3.11) takes the form:

sut = V(80 g*) = d(68 g*) + C*pcu® (66 ¢°)
= (—-dgA _ CABCpBgC)'sa

where the curvature term drops because of horizontality. Projecting on the differentials
dy®, df yields the BRST transformation laws of the gauge fields 42 and ghost fields g4:

(7.8)

bug = —(Vag*)86 (1.9)

1
892 = (—Bsg* — C*pcgPy©)68 = —ECABCQ’B g©60 (7.10)

In the last equation we have used the curvature definition (3.2) and the horizontality
condition R4, = 0 to express 8394 as:
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1
Bogt = —50“3093 g° (7.11)

This concludes the proof. The theory is BRST invariant, this invariance being on
the same conceptual footing as the other invariances of the theory. All of them have the
same geometric origin, i.e. are relics of diffeomorphism invariance on the enlarged group
manifold G+Q, i.e. the soft group manifold associated to the algebra (7.2).

The whole discussion can be straightforwardly extended to the case of free differential
algebras. It suffices to enlarge the FDA to FDA+Q. Let us see how this works in a
particular case.

The FDA we consider is the simplest extension of a Lie algebra (in the following
denoted by FDA1):

do?t 4 lCABc B =0 '
2 .

_ _ 1 .. 1. | (7.12)

dB’ + C'Aja'AB’ + EC'ABCGAO'BO'C =VB'+ EC’ABCJAUBUC =0

where B® is a two-form in a representation D"J- of G. The generalized Jacobi identities
(d* = 0), besides the usual ones for C4 ¢, are

C'iAjCjBk - CiB,-CjAk =C0%pC'c;, representation condition (7.13a)
! i i 1l B e "
'—EC [ABCC D]j + ZC [DAC BC|E = 0, 3 - COCYC].E condition (7. 136)

Eq. (7.22) implies that (C4)*; = C',; is a matrix representation of G, while eq. (7.2b)
is just the statement that C* = Ci 04080 is a 3-cocycle, i.e. VC' = 0.

To this algebra we adjoin the central fermionic charge @ and we allow the left
hand sides of eq.s (7.12) to be nonvanishing curvatures R4, R' respectively, satisfying
generalized Bianchi identities:

dRA —~ C45¢c RPu® =0 (7.14a)
dRi - C'AJRABJ + C'AJPARJ -— %CiABcRA,UB#C = 0 (7.145)
dR[Q] =0 (7.14¢)

The ghost fields are contained in the expansion of u4 and B along df differentials:
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WA (v, 0) = pg dy® +9% df | (7.15a)
Bi = B ,dy®dy® + b* ,dy"dé + g'd6dd (7.15b)

As discussed in ref.s [8,9], in the case of FDA’s we cannot require complete horizontality
of the higher form curvatures. We will comment on this later. In general, if R;) is a
curvature p-form, one needs to consider all the components (p,0),(p —1,1),...(2,p — 2),
where {r, s) denotes the components with r differentials dy® and s differentials df. In
our specific case the three-form R' is expanded as

R' =R 4 dy*dyPdy" + r} gdy*dy’db (7.16)

We want to prove again that coordinate transformations in the & direction reproduce
the correct BRST transformations on the FDAL1 fields. Applying the Lie derivative (3.10)
to B yields:

6B = (isyd + disy)B' = isy (B — C'pyu* BI = £Clapcutu®u®) + d(isy BY)  (127)
Specializing the tangent vector 8y to point in the @ direction, i.e:

iJ
o6

and projecting eq. (7.17) respectively onto the complete basis of 2-forms (dy>dy?, dy>dé,
dddg), one arrives at the transformation rules: -

by = 66— (7.18)

6—93":’6 = —rlaﬂ -+ C'AngBJaﬂ + C'AJﬂf;bJﬂ] + EC'ABchﬂgﬂg + a[abh (7.190)
gb:x =2 C' ;0% +2 C' ;089 — C' aponig®eC + 20a9' — ot (7.19%)
§ i N P i

58y = 3C AnggJ - §C 4Bc99® 9% + 8(29°) (7.19¢)

where ca.re has to be taken of the (anti)symmetrization properties of the various quantities
(for ex. g* and df anticommute etc.) As in the case for ordma.ry Lie algebras, we make
use now of the horizontality conditions to get rid of the 2 55 derivatives in eq.s (7.18b)
and (7.19¢). From

Ripp=Rlggy=0 (7.20)
(Ria,aa = riaﬁ from eq. (7.16)) we deduce
Bag’ — Beb, = —C' 009" — C'4jg*V + 5 C"Asc#;‘g" g° (7.21a)

Beg' = -C' 4;9%¢" + EC'ABCQAQBQC (7.213)
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so that the expressions for §-diffeomorphisms (7.19) reduce to:

6 o i i ' i i 1 i

ﬁB aff = —Tr af + C AngBJaﬁ + C A;pf:bjﬁ] + §C ABCQA#QB,UE + qabﬁ] (7.220)
8 . i i 4 o 1y i

580 =C 4940 + O iuld’ — 5C aBcta9”9C + dayg (7.22b)
§ i i i1

559 = C'a9"¢ — 5Cance”9"9° (7.22¢)

These are the usual BRST transformation rules for FDA1 as given for example in
ref.s [8,9]. In these references the BRST transformations are obtained via the “Russian
formula” algorithm due to Stora [4]. To compare them with eq.s (7.22) we recall that
in our language the BRST operator s is really dﬂ%, and that our ghosts have to be
multiplied by the df differentials before comparing. This is because in the algorithm of
[4] the ghosts are defined by '

pt = pldy* +g4 (7.23a)
B =B gdy®*dy® + b, dy* +¢' (7.235)

Let us comment now on the “almost horizontality” conditions (7.20). To see the
necessity of R' 59 = ry g # 0 consider the Bianchi identity (7.14b), and project it on
dy*dy? d8do:

agf"aﬂ - C'AjRA;,ﬂQJ + C‘Angf'Jaﬂ + EC'ABCR‘%:U,GQBQC =0 (724)

If we had insisted on total horizontality of R* in the 8 direction, i.e. riaﬂ =0, eq. (7.24)
would have implied an algebraic relation between the fields and the curvatures, so that
the basic fields of the theory would not have heen independent any more.

Can the fields still be considered to be independent of the fermionic coordinate 8 ?
After all, in the case of ordinary Lie algebras, this independence was due to horizontality.
Here, however, horizontality is not complete, and we may wonder whether it is possible to
remove the § dependence. It turns out that the “almost horizontality” conditions (7.20)
are enough to do the trick: indeed with their help we have removed the 3; terms in the
right hand sides of (7.19). We have therefore a sort of global theonomy: the knowledge
of the values of the fields at § = 0 allows to find their # dependence just by integrating
eq.s (7.22). The physical information resides then in the # = 0 restriction of the fields. In
other words, the dependence on & of the physical fields can be removed via a finite global
g-diffeomorphism (by integrating eq.s (7.22)). The resulting theory is invariant under the
global BRST transformation (7.22), where now 68 is interpreted as the fermionic BRST
transformation parameter.

In conclusion, we have proved that BRST transformations can be interpreted as
diffeomorphisms in 8 directions. In our framework, BRST invariant lagrangians can be
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obtained by “gauging” the enlarged free differential algebra FDA+Q, using the systematic
algorithm discussed in sections 3 and 4.

Anti-BRST transformations are easily included in the game, just by considering
another nilpotent central charge @, and gauging the augmented algebra G + @+ Q. This
of course introduces another grassmann coordinate 8, and the corresponding antighosts
ZA
g etc,

8. The sigma model of type II superstrings

Type II superstring theories, although deemed to be inadequate for realistic phe-
nomenology [10] (see however [11]), are been considered with renewed attention. This is
due to the existence of a canonical map [12,13], called the h-map in refs. [14,15], that
relates two different modular invariant heterotic models to every consistent modular in-
variant type II superstring theory. As emphasized in [13], the h-map is the analogue, at
the level of 2D-conformal field theories, of the spin connection embedding into the gauge
connection coupled to the heterotic fermions.

+ A classification of (2,2) heterotic superstring vacua has been given in [16}, where the
h-map is applied on the type II superstring compactifications on SU(2)? groupfolds (=
twisted group manifolds) [17,18].

In this section, based on ref. [19], we provide the geometric construction of the rele-
vant ¢-model for type II superstrings propagating on an arbitrary target space Mygpges.
From the action of this ¢-model, one can deduce the world-sheet supercurrent whose
structure turns out to be different from the one considered in the free-fermion con-
structions of ref.s [20). This supercurrent yields a more restricted set of solutions to
the problem of constructing four-dimensional modular invariant theories that preserve
world-sheet supersymmetry.

In subsection 8.1 we discuss the geometry of (1,1)-superspace, i.e. the space under-
lying the N=2 superconformal algebra in two dimensions. In subsection 8.2 we match
this geometry together with the target space geometry, and in subsection 8.3 we derive
the geometric action of the (1,1) ¢-model.

8.1 World-sheet geometry: (1,1)-superspace

In this subsection we derive the geometry of (1,1)-superspace from its underlying
algebraic structure, i.e. the two-dimensional N=2 superconformal algebra.

This superalgebra contains
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translations — V*
conformal boosts — K*
Q — supersymmetry — ¢
S — supersymmetry — ¢
Lorentz rotations — w®
dilatations — W

(8.1)

and we have indicated on right-hand side of the arrow the corresponding gauge field
one-forms. In the dual language of Cartan-Maurer equations the N=2 superconformal
algebra reads:

DVE+WAV® - %&.A vop =0 (8.2a)
DK* ~-W AK® --;-émﬂqs:o (8.20)
'D¢+:,12—WA¢-—£1"¢AV,=0 (8.2¢c)
Dé— %W/\ 6= AK =0 (8.2d)
dwu® + P Ay*b¢ —aVIEAKY =0 (8.2¢) |
dW -9y A¢+2VEAK* =0 (8.2f)

The 2 gravitini ¢ and ¢ are respectively Majorana-Weyl and Majorana anti-Weyl spinors,
i.e.:

g=pi®=9TC;  pp=v (8.3)
$=¢l=¢7C; g =—4¢ (8.3b)

Qur conventions for the two dimensional gamma matrices and the charge conjugation
matrix C are as in ref. [17]. Egs. (1.3) are uniquely solved by setting

g =it (f,) ¢ =¢ (8.4a)

$=e"% (0), xX*=x (8-4b)
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Now we allow the left-hand sides of eqs.(8.2) to be nonvanishing, and define them

to be the corresponding curvatures of the superconformal N=2 algebra. Moreover, we
introduce the convenient basis:

et = -;-(V" + V1Y), k= %(K” + K1) (8.5a, b)

W=y Wt =Wtow (8.5¢,d)
In this basis the algebra (8.2) is rewritten as *:

T+ =det +wtet — %((’ (8.6a)

T™ =de” +we” (8.65)

Zf=dkt—wTkt (8.6¢)

T =dk” —wtk 4 %xx (8.6d)

’ p=d(+ %w"‘( — 2xet (8.6¢)
o =dy— %w"'x --.-2Ck“‘ (8.6f)

RY = dwt + 2i¢x + 8¢tk (8.69)

R =dw™ +8e k+ (8.6h)

The associated superconformal transformations are nonlinearly realized in a suitable
superspace, called (1,1)-superspace, described by two bosonic coordinates z = £%4z!,z =
2% — 2! and two fermionic coordinates # and . Let us see how.

We consider the theory, whose basic fields are the 1-forms in (1.1), as living in the
(2,2,9,0) superspace. A complete basis of 1-forms for this superspace is given by its
supervielbein, which we choose to identify with (e*,e™,(,x), i.e. with a subset of the
1-forms associated to the N=2 superconformal algebra in two dimensions.

The torsion and the curvature of (1,1)-superspace are therefore defined by:

Tt =det +wet (8.7a)

* wedge symbols are omitted.
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T™ =de” —we” (8.7b)
. 1

T =d{+ §w( (8.76)
o 1

T° =dx— FWX (8.7d)

R=dw (8.7¢)

where w is the superspace spin connection (w = w!?).
The remaining 1-forms w®*, k¥ in the algebra (8.6) live on (1,1)-superspace, and can
be expanded on the (et*,e™,(, x) basis.

Now the question is: what is the geometry of (1,1} superspace ? In other words,
which constraints arise on the torsion and curvature in (8.7) because of the underlying
N=2 superconformal algebra ? _

The answer is found by analysing the Bianchi identities of the superspace torsion
and curvature, and of the superconformal curvatures (8.6).

These identities are immediately obtained by exterior differentiation of the defini-
tions (8.6) and (8.7), and are satisfied by the following torsions and curvatures:

superconformal curvatures:

Tt=0 (8.8a)

T = —%xx (8.85)

£+ = £(¢ @8

- =0 (8.84)

p=r1€te” + Pyet (8.8¢)

o=r1%%te” + P(e” (8.8f)

Rt =(8+R)ete +ir°xet —ir*Ce™ —iP(x (8.8¢)

R~ = —Rete™ —ir°xet +ir*fe™ +i(P + 2)(x (8.8h)

¥
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superspace curvatures:

T = (890)

T = ———%xx (8.9%)

T =r1¢te” + (P +2)xet (8.9¢)

T° =1%te™ + (P +2) e~ (8.9d)

R=-R" (8.9¢)

w=wt= —u.;" (8.9f)

where R, 7° and 7° are the only independent fields, and P is determined by

Dor* —(P+2)? = %‘R (8.10)

-

Let us comment what we have done so far. We have taken as initial algebraic
structure (G the N=2 superconformal algebra in two dimensions. We have then chosen
the particular subgroup H C G spanned by the Lorentz rotations, conformal boosts and
dilatations and considered the “H-horizontal” fiber bundle G = (G/H, H) where the
fiber is H. The bundle is “H-horizontal” in the sense that all curvatures vanish in the
H-directions of G. This allows to consider the basic left-invariant one-forms of G as living
on G/H . This G/H is nothing else but the (1,1) superspace we have been discussing.

A geometrical theory based on G is invariant under G-differomorphisms. Therefore,
to find the transformation rules of the basic fields in eq. (8.1) we apply the Lie-derivative
rule and find for the (1,1) supervielbein:

bet = DEY + (¢ + A)et +ie (8.10a)
de” =DE +(¢p—A)e” —inx (8.108)
= Det L + +
8¢ = De + 2(¢ +A¥ +(P+2ne™ + Pxér+ (8.10¢)
+7r%te” + et
1 - -
§x =Dy + 5(—¢ + Ax + (P +2)ee” + PCE™ + (8.10d)

+7%%e™ + et

4
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where £%,£7,¢,1, A, ¢ are the parameters of the left translations, right translations, Q-
supersymmetry, S-supersymmetry, Lorentz rotations and dilatations respectively.

These transformations preserve the constraints (8.9) and allow the choice of a special
superconformal gauge where:

et =dz + %eda

e~ =dz + %ﬁdﬁ
¢ =df
x =df (8.11)
and:
?=r"=R=0
’ 812
(= P=-2) (812)

8.2 Field equations of the target space supervielbein

In this subsection we introduce an embedding function X*#(z, z, 6, §), mapping (1,1)-
superspace into an arbitrary target manifold M., and describing the superstring
propagation on Myarger. From the Bianchi identities of the Miarges-curvatures we de-
termine the field equations for the Myqorgee-vielbein V4(z, z, 8, 8), which can be viewed
as a 2-D superfield, i.e. a function of the (1,1)-superspace coordinates. The same holds
for the target spin connection w®(z,%,6,8). Thus the Bianchi identities of Miarget,
which is per se a purely bosonic manifold, become actually differential equations for the
2D superfield V%(z,%,6,8) in (1,1)- superspace. As usual in supergravity theories with-
out auxiliary fields, Bianchi identities determine the equations of motion of the physical
fields, in our case the superfield V?(z, Z, 8, 8) (or its component fields along the complete
basis of 1-forms for (1,1)-superspace, see. eq. {8.14)).

The torsion and curvature of M,,ge: are defined as usual by
T® = dV*® + W™Vt = T4, Viye (8.13a)
R® = dw® + w*w® = R* Y °Ve (8.13h)
where the Mygpg¢-vielbein can be expanded on the basis e¥, e, , x of (1,1)-superspace:

Ve =Viet + V%™ + A% + u®x (8.14)
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Thus, the superbielbein V* contains two bosonic fields V!, V? and two 2-dimensional
spinors A%, u®,

Inserting the decomposition (8.14) into the torsion definition (8.13a) yields, in the
various sectors of (1,1)-superspace:

ete™ : —V_VE 4 VyVE—27% VIVE =0 (8.15a)
eV (: =V VP 4+ V4A® —2T%, VA =0 (8.15b)
ety =V VP + Vip® — 274 Viu =0 (8.15¢)
RS AM V_ae 2T% . V2A® = 0 (8.15d)
eTx =V Ve +V_put —2T% Vit =0 | (8.15¢)
¢¢: %V: + VA + T2 =0 (8.15f)

(X 1 VoA® 4 Vou® + 279 APuc - 0 (8.159)

XX —%V_'.' + Vop® +T% p1ut =0 (8.15h)

Consider now the Bianchi identity for the My, g¢t torsion (8.13a):

VT = V2V*® = R*V? (8.16)
or:
Vive = RtV (8.17a)
VIVe = RV (8.17b)
VIt = Reb)b (8.17¢)
Viu® = R*bub (8.17d)

As we discuss later (subsection 8.3), for a generic (1,1) action including a topological

WZ term [ H, the components of the torsion T,;, will be ultimately identified with
ME
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the components H,p. of the closed 3-form H = Hyp. V" VtVe. This justifies taking Type
completely antisymmetric and

d(TopVVVE) =0 (8.18a)
or
VieToed) + 3T14,T5 = 0 (8.18b)

This ansatz is compatible with the Bianchi identities solved in this Section. Together
with the torsion Bianchi identity (8.16):

VimT%q + 2T Thg = R%(mpq (8.19)

the ansatz (8.18) implies the following identities:
VaTsem = —6T 3T g + 3R fhom (8.20a)
Rpem) = TopTm (8.200)

Next from eq. (8.17¢) we find

v (V+A“e+ +V_)e + (—%) V¢ —Tobeadac¢ + vo,\'x) =

= R* (Vict + VEe™ + X°%C+ ux) (Viet + Ve~ + X% + u¥x)

(8.21)

For simplicity, we set

VoA =0 (8.22)

in the following, This constraint is compatible with the Bianchi identities, as we see in
this Section, and really amounts to a suitable redefinition of the spin connection w??.
From the xx sector of eq. (8.21) we find

—%V_,\“ = —R* ; Xyt (8.23)

which is the A® field equation.
Similarly from the (¢ projection of eq. (8.17d) we have

%vw“ = <7V — R%P b acxd (8.24)
i.e. the u® field equation. We have used

Vep® = =2T% Au°
from eq. (8.15g) and
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t
V(TN = S TR Vi
where the VT + T'T terms cancel after use of egs. (8.20).

The V2 field equations can be found from the x projection of (8.17a) and from the
{¢ projection of (8.17b):
V_VE = 2R, Viaxd ~ 2iR% V2 ucpd
_ 2V¢RbcdeAbAcﬂ_d,ue + SRJ‘“Tt“Adz\’,ubpc
V.iVe = 2T*°Vive 4 2iR*E V2 ae)d
~ 2R*_Viutut (8.26)
_ zvaRbcde ,\b’\c#d‘ue + SRJGuTtac/\dAe#bpc

(8.25)

again after use of the identities (8.20).

No further information can be gleaned from the torsion Bianchi identity {8.16). As
usual, the Bianchi identity for the M qrg.¢ curvature (8.13b) does not give new conditions
when the other Bianchi identities are satisfied.

8.3 Geometric action of the (1,1) c-model

In this subsection we construct the action that yields the parametrizations (8.15)
and the field equations (8.23-8.26) together with the constraint (8.18).

We begin be writing a natural extension of the (1,0) lagrangian (in our notations,
this lagrangian is given in Part. 6 of ref. [1]) where now many more terms are possible,
because of the presence of the second bidimensional spinor u®:

S= / [(V* = 2a%¢ — pox)(Met ~M%e™) + 2i0*VA%et + a2iuVute™
oM

+APVEC 4+ BtV x + I3 M ete™ +ad it (x

+1 T“cz\“ )\"A"(;e"' + tzTabc”a.ubpcxe-— + tsTabcAa ,\bpcxe-l- + hT“bcp“pbz\cCe_
+ tsTabcl\n Abyeet + tsT“"‘,u“,u"Vce'

+ (7'1 Rabcd +q Tfabecd)Aa Ab#c#de+ e~ + (rzRubcd + qu_fabT_fcd)l\a p’z\‘p‘e'*e"
+ (TSRGL + quuchbcd)l\a Ae#bpee-{-e— + (7'4R + q4T°i°T°5°)/\°/\f,u°,u'f] +

+ [ B
M

(8.27)
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M is a three-dimensional manifold bounded by OM, and the three-form H is closed:
dH = 0. Note that all the terms in § must have vanishing w-weight, where the w-weight
is given by the coefficient of the w-connection term in egs. (8.7):

(%] = 1 =3

1 1
=3 b= (528
b= -3

since the action must be invariant under Weyl rescalings and two-dimensional Lorentz
rotations, generated by J12 + D. The w-weights of A and u® can be deduced from eq.
(8.14) (V*° has w-weight= 0). Moreover, the action S is invariant also under the global
rescalings

Ve = wV* ¢ — %wc
A > %w,\‘ X = Zwx

. . (8.29)
B - Swp

=>Tubc - w—lTabc
Rabcd — w—zRabcd

which preserve the parametrizations (8.15) and the field equations (8.23-8.26).

The undetermined coefficients in the action (8.27) are computed by requiring that
the variation 65 reproduces the parametrizations (8.15) and the field eqs. (8.23-8.26).
Variations in II} yield immediately

1=V (8.30)

namely the auxiliary 0-forms II$ are identified with the bosonic projections of the target
vielbein.

The variation in the spinor A® leads to the following equations, in the various sectors
of (1,1)-superspace:

¢¢:0=0 (8.31a)
xx:0=0 (8.31d)
{x:(1+a)u®*=0 (8.31¢)
(et 1 =2V} + 4iV A" 4 84, T*eabac + 25, Tobenb e = ¢ (8.31d)
Ce™ 1t Tyt = 0 (8.31¢)

xet i 4;V A" + 23 TN ue 4 21, TNy = 0 (8.31f)
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xe :0=0 (8.319)
ete™ 1 —4iV_X* — 25T APVE 4 2(r R, + qu TFObTFed)Ab e+

+ 2(1‘2R.[“ d 4 quf BT.f d)pb'\cpd + (rsR% + qufyangb)’\qp h -

—(rsR?, + q;T!’-"Tf”)z\*"p 4%+ 2(ra R + @ TPT ) utpu =0 (8.31h)

leading immediately to

a= —1, t4 = 0, t3 == —'t_r, (8.32)
(the last equality being due two the choice V,A* = 0). Imposing further

3t; + 25 = 4 (8.33)

we see that (8.15f) is correctly reproduced. Also, comparing (8.31h) with the field equa-
tion (8.23) we see that

4
its = 0 (=} tg = 0, t1 = '3'1) (834)
is necessary since the corresponding term T**°A*VE cannot be otherwise eliminated.
Moreover, the last four terms in the action (8.27), i.e. the terms with ry,q1,---r4, ¢4
must sum up to 4R*®_; A°A%ucu?, so that eq. (8.31h) indeed reduces to the field equation
(8.23).
Varying now S in éu® we find:

¢¢:0=0 (8.35a)
xx:(a+ 8t =0 (8.358)
(x:(B+1)A*=0 (8.35¢)
Cet:0=0 (8.35d)
Ce™ 1 diaVu® + 2T ubA° = 0 (8.35¢)
xet : -1+ 8)Vi=0 (8.35f)
xe~ 1 4iVop® + 2V2 4 (3tg + 2t6)T**ubpu’ = 0 (8.35¢)

teT 1 4V u® + 2 T*uVE + B8R ubacad = (8.35k)

These equations imply

B=-la=1lt=4it=—3i (8.36)

and the eqs. {8.15g,h) and (8.24) are satisfied if

4
te = 4‘, tg = —Ef (8.37)
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All the coefficients in the action (8.27) have been determined, and S takes the form:

S= ] [V = A%C — pox)(H% et — 1% ™) + 20A°VAZe*

oM
4 2ip" Vpe™ + AV — 4 Voix + D% ete™ — A%u%(x
+ %iT‘"‘A“A"A‘Ce"‘ - %:'T“‘,u“p",u"xe_ (8.38)

_ 4':Tabcpa#5vce— + 4Rcicd,\¢,\b.ucpd]
+ / H
M

Next, we consider the variation of (8.38) in the coordinates X#. It is convenient to use
the anholonomized variations X * (tangent vectors to Mygypget), Whose generator is the
Lie derivative:

SsxV°®=€x Ve =isxdV® + d(l'g_xV“) (8.39)
where
6X =6X°P,, V(P) =26 (8.40)
and we have:
bsxV*® = VEX® + 2T XV — (isxw™)V? (8.41)

where (i5;w"*)V? is a field dependent Lorentz transformation on the vielbein. By the
same token we have:

Ssxw®® = V(isxw™®) + 2R $X°V4 (8.42)
bsx f H=3 / HudXViVe (8.43)
M oM

Varying now (8.38) in 6 X*° yields, in the (¢ and xx sectors, the constraint

Tcﬁc = _3Habc (8.44)

which we anticipated in subsection 8.2. The §X* variation in those sectors is really a su-
persymmetry variation, so that the constraint (8.44) is necessary for the supersymmetry
invariance of the action. Note that 7%%¢ = const - H%¥¢ can be obtained from the more
general action (8.27), where all the coefficients are still undetermined. The other sectors
of §x S simply reproduce the field equations (8.23-8.26).

Finally, we compute the stress-energy tensor E of our final lagrangian (3.12), defined
by
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5S= f (Eyet + E_Se™ + B8 + Eoby) (8.45)
Recalling the transformation rules (8.10) in the special gauge (8.11) and requiring
6S 68
55 = 54 =" (8.46)
yields
E+— = E—+ = E.— = E-—. = Eo+ = E+g = 0
1
E+. = EE.-'- (8.47)
1
E—o = _"2"Eo--

Therefore, we are left with four independent components:

E++.s E__, E+0$ E_,
Varying the action S in de*, e, 6¢, 6x, we find

. Eyp = V,:V_r + 2:12*V 3 A° (8480)
E__ = -V2V2 4+ 2iu°V_u® + 4TV ubu° (8.48b)
Epe =A%V — -g—iT""",\‘/\",\" ' (8.48¢)
E_,=—-u*V2+ giT“bcp“p"pc (8.48d)

and it is straightforward (but somewhat laborious) to show that:

V_E4+ =0 . (8.49a)

V,E__=0 (8.495)
V.,.E.p. =0 (8-496)
ViE =0 (8.49d)
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