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Abstract

We use Grishchuk’s approach to introduce Gravitation via a rank-two symmetric ten-
sor field in a flat space-time. We then examine the consequences of a non-identical coupling
of gravity with electrons and neutrinos. We show that a local co'unterpa.rt of the gravita-
tional interaction must occur, mediated by massive spin-two tensor bosons. A universal

Higgs mechanism thus determine the mass of these bosons.
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1. Introduction

One of the most interesting advance in general relativity in the last years has been
given in the Grishchuk et al’ paper. These authors have shown that it is completely -
equivalent to treat Einstein’s General Relativity in terms of a rank two symmetric tensor
field ¢#*” in an arbitrary space-time manifold. Such a @"" tensor field has the same
properties of all usual standard physical fields approached in the ordinary Minskowski

space-time.

In the first part of this paper we give a short review of the main features of the GPP
(Grishchuk, Petrov, Popova)! approach as to convince that the ¢** tensor field may lead
to the usual equations of General Relativity. We shall give the bridge formuta which allows

to pass from ¢*¥ variables to Einstein’s geometric ones.

In the second part we use this formulation to couple Gravity to the Fermionic world.
For the sake of simplicity we restrict ourselves to leptons. Actually we deal only with the
first generation, the electron and its corresponding neutrino, the generalization for other

leptons being in principle straightforward.

Leptons interact with photons, the intermediate vector bosons of the Weak Interaction
and Gravity. We use the Standard Model of the SU(2) xU(1) gauge theory to describe the
Electroweak Interaction. In order to preserve the symmetry properties of such a theory we
are thus led to introduce new charged and neutral spin two fields which are the companion
in the SU(2) scheme of the gravitational field.

In a quite natural way it appears that such fields become massive after a spontaneous
symmetry breaking via a Higgs mechanism. Such a feature will be described in the third

part of our paper.

The overview of our paper is that the only different coupling of electron and neutrino
to Gravity sets in evidence the existence of a new short range force which can be interpreted
as the local counterpart of Gravity in the same way that the Weak force can be interpreted

as the local counterpart of Electromagnetic interaction.
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2. The GPP variables

Let us consider a symmetric rank two tensor field ¢** defined in a flat Minkowski
Space-Time (MST}). Let be ¥** the metric tensor of (MST) given in an arbitrary coordinate

system. The covariant derivative of an arbitrary vector 4* is defined in the standard way

A¥, = A 49l A° (1)

where

1
7::: = E 7”0 ('Tac,v + Yav,e — "hv,cr) (2)

is the usual Christoffel symbol.

As we do work with a flat space-time we could choose a coordinate system in which the
Y, Christoffel symbol all vanish. However we decide to work in an arbitrary coordinate

system in order to preserve the general covariance of the theory.

The gravitational field is represented by ¢** and for reasons which will be clear later
on, we deal with a functional K, of ¢** which contains up to first order the derivatives

of p*¥. We then introduce a Lg lagrangian

=2k Lg = V=7 (v** + V&E ¢**) (Kg\.q — Ky + K2, Ko — K25 K51 (3)

where kg = 8:__’.‘:" is the Einstein’s constant (kg =~ 10737 GeV %)

and
K2, = K2, (4)
while

K, = K2, (5)
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Note that we have made the standard choice dimp*” = [p#¥] = EY/2 [~1/? and used

natural units h = ¢ = 1.

For simplicity sake we define

(KK)u = K, K, — K5 K, _ (6)

and the Lg lagrangian now becomes

—2Vkp L9 = V=7 (""" + VEE ¢") K]y — Ky + (KK )| (7)

We now follow Grishchuk et al! and consider independent variations of p** and Kg,.

The Euler-Lagrange dynamic equations for a ¢** variation give

1 -
K::v:a - E (K g + KFEF) + ('ﬁ K)J-W = 0 (8)

while variation of K, give the functional relation between Kg, and o*v

Pla = (" +¢") Ko+ ("% + ") Ko + (7 +0"%) KL, =0 (9)

We extract K from this equation and bring it into (8) giving a rather complicated set

of equations

D Soﬂ-v - ‘Io{p,;v);f + Soa;i,,a 7}“’ = —2 (KK)I-W' + (KK) ‘T#'-V + w;u;/\ (10)

. . A - -
in which @}, is given by

iy = Lipeu ‘PGA -+ Ky.ev ‘PeA - K,ueA ‘Pey - Kve’\ (Pe# + KA(,«. 'Pey

+K:u '*P:;, - K, 'Pﬁ - K, ()0;\; + K* Puv — -K-Ao:ﬁ ‘Paﬁ Yur {11)

These equations can now be interpreted in a beautiful and simple manner using Einstein’s

geometrical scheme.

It can be accomplished through the identification of a new metric tensor ¢** defined

in terms of v** and of the gravitational ¢*" field by
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V=g " =1 (4" + Vrg ¢") (12)
where g = det g, and v = det 7,.,.

We introduce the object (g#*)~! as the inverse of g** by the definition relation

(gﬂv )—l gvA = Guv gv)L = 053 (13)

and we shall stress that for all tensors lowering and rising of indices is made by the flat

+*¥ metric tensor. However with the given definition of g*" its inverse (g**)~! is different

from Yua Yoa g"“\.

From now we will not write (g**)~! but simply g,, and we define the I'j, Christoffel

symbol associated with the ¢** metric tensor in the standard way

e =

By ga-\ (gp).,v + Gvrgp — gpw.a\) (14)

B | =

When one brings in that definition equation (12) one gets after a straightforward
calculation

P:u = 7:v + V&g K:v (15)
where
1
VHRE K:y = 3 gaﬁ (98w + 98vin — Guvip) {16)

We then recognize in K, the tensor introduced in the £g lagrangian. We insist on
the fact that even if K], is defined as the difference between two connections, it is a true

tensor as shown on its definition (16).

We can now use definition {12) and properties {15} and (16) to get the Ricci curvature

tensor associated to g*¥

ot

R, =K,, — K%, —(KK),, (17)

fryss.’
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It is thus evident that the Euler-Lagrange equation (8) reads

R,, =0 (18)

Moreover the Lg lagrangian (7) is now expressible in terms of the curvature tensor

~2xp Lg = /g R, ¢ (19}

which shows the equivalence of the description of the gravitational field either in the

coordinates ¢*” or in Einstein’s geometrical variables.

Now comes the question : which one of the 4* or g*¥ metric are observable quantities?
This depends on how matter couple to Gravity. Universality of Gravity implies that only

g"¥ metric is the observable quantity while 4** is a fictitious auxiliary metric.

In order to prove it, le.t.us. suppose that ®4 represents all existing matter (A is a
collective index) and the dynamics of which is given by the lagrangian Las ($4 ®4) (we
remind that the covariant derivative (;} is defined through the flat connection Yar ) In
order to couple the field matter with gravity the rule extracted from (GPP) is to introduce
the g* tensor through a correspondence principle which modifies the metric v*¥ and its

associated Christoffel symbol 7§, in terms of g# and Ky,
V=1 ™ > V- (" + VeE ¢*') = Vg ¢*¥ (20)

7::; - 7:u + VvEE K:v = F;aw (21,
It {follows then that in presence of matter R,, has to be replaced by

. 1
R;w = —KE (Tnv - E T g.uu) (22)

which is nothing but Einstein’s equation of motion in presence of matter.

We have thus achieved to show that it becomes completely equivalent to work with
the only sy.mmetric rank-two tensor ¢** in a fictitious flat espace-time background, or
with the geometric variables ¢** and K2,. Both choices lead to the same exact Einstein
General Relativity Theory.
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3. Gravitation in the leptonic world

Let us review briefly the Weinberg-Salam Standard theory of Electroweak interac-
since we shall use it as a guide to couple Gravity to leptonic matter.

tions 2%
The description of electroweak interactions induces us to treat electrons and neutrinos

(23)

by means of an isodoublet
1 Ve
2 (1 -x) ( e )

(24)

and a singlet
(1+7s) e

L

R=

where 75 represents the usual Dirac’s matrix 45 =1 7% 4! 42 4.
The gauge group SU(2)r x U(1) beeing a local symmetry group it follows that the

usual derivatives J, have to be replaced by the covariant derivatives
. 1-. = i '.
D,=8,—1g E'Wu_ig B, (25)

where ﬁ’,, and B, are the gauge fields (connection of the symmetry group).
The dynamics of these fields is given by the Standard Flectroweak theory through the

Casw la.gra.ngia.n
V., Wev (26)

py

[t

J— — 1
Losw=1i[Lv, D, Ly + R+, D, R+*] =7 By B* -

(27)

where

B, =4, B,-8, B,
W =8,W, -8, W, +g W, AW,
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and as throughout this paper, vV represents the flat Minkowski metric written in an

arbitrary coordinate system.

In order to set altogether the interactions of leptons with the fields in which they are

immersed we have first to schwitch on gravity.

The standard way to couple gravity ®** with leptons is through their energy-

momentum tensor T,g(f) by means of the lagrangian

Eint = \/’G Taﬁ(e) QG‘B (28)

or after separation of leptons into electron and neutrino

Lint = Vg (Taple) + Tap(v)) $°° (29)

For a given fermion f we recall that

Tag(f) = F % Dvy f¥he. = F (v Du +v D,) f+hee. (30)

so that one obtains for the energy-momentum tensor of leptons

Toaple) + Tap(v) = L Ye Dgy L + R Y« Dpy R+ hec. (31)
For the moment, there is no evidence that the coupling of Gravity with electron and
neutrino are exactly identical.

To let such a question open, let us introduce a ¢ weight between the two energy-

momentum tensors

Lint = V&g (Tap(e) + £ Top(v)) o°° (32)

It is clear that ¢ must be close to unity since the observations of the SN1987 A
Supernovae® has given £ =1+ 0 (< 1073).

After some simple algebraic manipulations one can show that
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+1 = = -1 =
Taple)+ € Taap(v) = 5—2-* L’Y(a Dgy L+ R v Dgy R+ eT L vy Dgy 13 L+ h.c. (33)

The important fact is that a 73 operator occurs now. To complete the algebra we have
to introduce the charged tensor currents L vy, D, % L. Due to charge conservation these

new currents do not couple directly to gravity.

In order to preserve the SU(2)y x U(1) ga.uge symmetry even in presence of tensorial
coupling, let us introduce a triplet of tensors c,o ) and a singlet ¥,,. Now leptons L and
R couple to the intermediate vector bosons (,o(') and ¥,,. These tensor bosons are true
vectors in the SU(2) algebra and not connections. In this sense they are not gauge fields,
so that we can note that gravity in our approach is not treated as a gauge field. By the
way, there is no need to treat gravity as a gauge field.

As we have shown in the previous section the interaction lagrangian with the gravity

can be written using the flat space time tensor field $** as

— -1
Lint = = «KE ["'""'— L e Dv} L+R ¢ Dv) R+ 6_2_'_ L Y Dv) 73 L] ) o (34)

When one introduces the @fu‘z and ¥,, to restore the SU(2) x U(l) symmetry it
appears two arbitrary constants x, and x; and one transforms the above lagrangian into

the following

- T, i 1 T v
tnt_"_ V'K'a L‘T(,u. v}TL-@# +§ \/’i_bL7(p DU}L‘IJF

@
I+£\/_R7(" DyRY (35)
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The point of contact with observation is made through the fact that gravity couples
to the electron and the neutrino by the terms /kg T,.(e) ®** and ¢ \/xg T..(v) ®*
and by the fact that gravity like electromagnetism (EM) conserves parity.

The gravitational field $*” is to be identified with a definite linear combination of
() and ¥** which can be written in a standard way as a particular rotation with a 7

mixing angle
(¥ _fcosn -sing Y nd (36)
g J T \sing  cos orv
We thus obtain for the gravity field #* the expression

3 = —sin 7 **® + cos 7 ¥ (37)

The same rotation applied to the lagrangian leads to the following relations

cos = (£ + 1) %f— (38)
sing=(6-1) /2 (39)

and we can extract the xg Einstein's coefficient in terms of the coupling constants x, and

Ky and the £ coeflicient

P Ka Kp
E T €+ 1)k + (€ - 10w,

(40)

These relations may be expressed in perfect analogy with the case of the electroweak

unification in which

e =g sin 8w = ¢ cos Ow (41)

In our case too it thus appears with (38} and (39) a short range gravity-like force as
the local counterpart of the gravity
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ﬁ:ﬁsinn:Eﬁwsq (42)

It thus appears an evident correspondence between the electroweak constants of the

Weinberg-Salam standard model and the constants emerging in our theory (Table 1).

What conclusion can we extract up to now ? Firstly, when dealing with the classical
Electromagnetic (EM) and gravitational fields, we get infinite range forces mediated by
null-mass bosons. The enlarging of EM to Electro-Weak (EW) is made after taking into
account the existence of a peculiar fermion, the neutrino, which interacts quite differently
with EM (no interaction at all) and with W interaction. It leads to the necessary introduc-
tion of a local counterpart of the EM which is precisely the W interaction. Since we have
treated gravity with the same SU(2) x U(1) standard procedure, the fact that the neutrino
may interact differently than the electron with gravitation has obliged us to introduce a
local counterpart of gravitation that is a short-range gravity-like force mediated by massive

spin two tensor bosons. We have now to determine the origin of the mass of such bosons.

4. The Higgs mechanism

The most economic way to give mass to vector and tensor bosons is by introducing a

*= (%)

of complex scalar field, one electrically charged the other being neutral.

unique Higgs’s doublet

The total lagrangian will then include a term which couples the gauge bosons (GB)
to the scalar field S

Lop-s = |D, & -V (8" @) (43)

where D, is the covariant derivative operator defined in (25} and V i®*+ &) the Higgs

potential

V(eT 8) =4 (37 &)+ h (2" ®), R>0 4 <0 (44)
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Let us now introduce a Lagrangian which couples the tensor bosons (TB) with the
scalar field

Lre_s = (A 7" + B ¥**) 8)? {45)

The A and B coefficients must be adimensional numbers.

The conventional spontaneous symmetry breaking mechanism uses the minimum value
of &

2
<‘I’>=(72n)with u’=—‘i— (46)
2

and by replacing ®* by zero and $° by ﬁ- (v + x(z)) some mediating bosons become
massive. Using the relation (36) and expanding Lrgy_g one obtains after the symmetry

breaking the following results

m? =m? (p#*) = o7 47 (47)

M? =m? (Z*) = v* (A cos 7 — B sin n)? (48)
in which we use the conventional notation ¢4" = ¥ 1") +i (pz';)

The condition that ¢** given by equation (37) is identified with the long range grav-

itational field imposes to its mass to be zero, so that

Asinn+Beosn=0 (49)

One thus gets the constraint

B .
— = — !
1 gn (50)
and (38) and (39) lead to the value
B 1-§¢ [k
AT 1+¢ Vi (51)
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One can then extract from (47) and {48) the mass of the tensor bosons in the following

form
m=vA (52)

A
M=12 -2 (53)

‘ces T cos 7

Comparing these results to the mass of the intermediate bosons of the Electroweak

interaction

Mw = ‘2— gv
M (54)
Mz =
cos Bw

One finds exactly an analogous relation as expected by our analogy (Table 1).

It makes natural then to set 1 g «— A and thus fix the A and B coefficients in terms

of kK, and £
14/ 1
A=1Vmlee 11 (55)
2 §-1 2 sinn
and thus
1 1 1
p=_L Va1 (56)
2 £+1 2 cos

We check that obviously such values fulfill the constraint condition (49). We now get

the mass of the tensor bosons

pv:i:) = v

m =m (g

2snn (57)

v

sin 2n

M=m(Z") = (58)
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The universality of Higgs mechanism that we are using fix the vacuum expectation
value v > 246 GeV/c?, so that the determined masses depend on the only % mixing angle

parameter.

We have to wait for future observations in order to fix experimentally the value of the 5
angle. This new Short Range Force induces many new decay processes as the consequénce
of the above lagrangian and the full properties of this force can be obtained only through
experiments. For a mean value of = T one finds that m ~ 174 GeV/c? and M =
246 GeV/c?.

5. Conclusion

In this paper we have presented a model in which Gravity can be introduced into
the EW unified scheme. This has been made possible because of the previous GPP re-
sults which allow to treat gravity as a conventional rank-two symmetrical tensor field in
ordinary Minkowski space time. We stress the fact that the GPP approach is not an ap-
proximation but it is the exact complete general relativity Einstein’s theory. Then we are
obliged to introduce charged spin-two fields in order to deal with the group structure of
the EW gauge theory, under the hypothesis that gravity does not break this symmetry
and couples differently with the electron and the neutrino. This has the first important
consequence that there must exist a new Short Range weak interaction which becomes the
local counterpart of Gravity in the same way as the W interaction can be thaught as the

local counterpart of the EM field. This new force is mediated by massive spin two tensor

bosons ’.

Following the conventional procedure the mass of these particles is provided by a Higgs
mechanism. The universality of a spontaneous symmetry breaking process is proposed
meaning that the same Higgs field gives mass to the vector bosons of the E'W theory
and gives in the same way mass to these tensor bosons. It means that we have only one

fundamental vacuum responsible for the mass creation.

The success of the standard EW SU(2) x U(1) is due to the fact that this scheme
presents a unique description of two well-known forces, a long range (EM) and a short range
one (W force). In our case we have been conducted to add to the long range gravitational

force a new Short Range Gravity force in order to preserve this unified scheme. It is now
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a matter of experimentation to put into evidence the existence of such a new force and of

its mediating tensor two bosons and determine the 7 mixing angle.
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Table 1
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Correspondence between the coupling constant and the Electroweak
angle @ to the constants emerging in our Short-Range Gravity - Gravity unification

EW SRG -G SRG ~ G normalized
Ow n _ 7

g Ve fE -1 Vire/xg [ ~1
d VR f€+1 Ve lkE € +1

; V= B
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