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ABSTRACT

We propose a method +to simultaneously perform  a
symmetry adaptation and a labeling af the bases of the irre-
dJucible representations of the soluvable finite groups. it
is performed bu defining a self-adjoint operator with
gigenvalues which evidence the descent in suymmetruy of the
aroup—subgroups sequences.

We also prove two theorems on the canonicity of the
composition series of the solvable aroups.

Key-words: Finite groups; Labeling of energy ilabels.
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I. INTRODUCTION

Group Lheory isx a powerful tool for the studd of the
phugical properties of guantum mechanical sustems. In order
to exploit effectively the summetru properties of the
sustems, it is of great importance to know how to perform an
adaptation of the corresponding state vectors . In this
paper we show that it is possible to make a sSymmetry
adaptation and simultaneously a labeling of the bases of the
irreducible representations dirreps?> of the finite groups
associated to phusical problems.

In Section 11 we show that a composition series of a
zolvable aroup is always a canonical sequence,; an essential
requirement for the labeling to be unique. This is a highly
desired result Eince the majoritu of the groups associated
to solid state physics and quantum chemistry problems are
solvable groups - as is the case of ¢rustallographic groups,
point groups, Shubnikov groupss etc.

In that section we also show that the sequences of the
maximal subgroups of crustallographic point groups are
canonical series.

The labeling of the basis functions of the head group
in a sequence is perform in Section I1I, where we show that
it is possible to construct a self-adjoint operator for each
one of the sequences of the tupe 6, 2 6 2 ... D & , such
that the eigenvalues show the descent in summetry in the
chain and their corresponding esigenvectors actually may be
the summetry adapted bases of the irreps.

The key of the labeling consists essentially in
adopting the general Bethe’s conuention for the irreps,
such that we let the eigenvalues of the operator be integer
rumbers given in a convenient form to label the irreps of
each group in the sequence. We also show in section I11

that in order to construct the labeling operators; we only



CBPF-NF~021/87

reed a character table of the groups envoluved in the
SEqUENCE .

The extension of the method to label the bases of
vector fields is analised in section 1V where we alszo
Ppropose a solution for the cubic harmonics, that is, the

labeling of the bases for the sequence SUC2) O nﬁ s

I1. CANONICAL SEQUENCES

First we recall that a group has a canonical sequence
when the number of times the irreps of each subgroup in the
series occur in the restriction of the representations of
the corresponding preceding group is either one or zero.

l.et a subclass of @ £ € be the set of elemenis
thah ™} [heHd, where H G € . Wigner (1968) has shown that if
all the subclasses so defined commute, €2 H is a canonical
Sequence. Since the application of this theorem is in
general very difficult, we are gaing to show that 1i> Hc €
is a canonical sequence if the index of H in & satisfies
|6t Hl £ 3 or |€:t H| = 4 in the special case when

HEOT® = nogHe Tl © 28, 1>
acG

being Z<(E* the group of the center of &, and that ii?
every composition series of a solvable srouwp is a canonical
sequence. For this purpose, let 1 be an irrep of H [ an
irrep of € and <L|1> the number of times the representation
v occurs in the restriction [y of the representation rI.
i> From the orthogonality of the characters of the
representations of H and € we have

<2 = sl x jLa|®
1 haH
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< a/m> = |2f@)* = je|/In] . 2>
9¢C

Therefore, <Cle> £ 1 Y |61 H £ 3.

It is clear that if 6 is an abelian group, Hc € is
canonical. Then, let us suppose that € is not abelian and
that H and € are grouprs such that 1if H € & equation <I)
holdss i.®.» the core of H in 6 is contained in the group of
the center of €. Under this assumption, we shall now prove
that

z J2fao|® <le] .
hzH .
1f we suppose that in equation <(2) the equality holds,
we should have xi¢g) = @ Y g ¢ <& - HE™®I.  Then,
equation (2> might become

¥ |2Tcor|% = M0zl c133? = 6] <3
ok
and if we sum {xr(l>)2 over all T ¢ irrep(G), we again
obtain {€]| . Therefore,

l"EPPQI = number of conjugacy classes of L.

Clearly, the resulting equality contradicts the
assumpt ion because since € ix not abeliany; the rumber of
clusses of € should be greater than the order of ZG. Ue
then conclude that if |CtH| = 4 and KE°™® c 2¢® , the
sequence H © € is canonical. When 6 is a crystallographic
point group,; we have |91IG“,1| =2, 3 or 4 for the maximal
subgroups sSequences. This index is egual to 4 for the
sequences q': o nﬁh ’ o* > D; ’ T; = C;U ’ 'I';: = Cgh.
Equation ¢1) holds for all these sequences and therefore,
the sequences of maximal subgroups of crystallographic point
aroups are cahonical.

ii> Let the stabilizer of ¥ in € be given by
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Sel 1> = (96| P (hd=rlghg I~1Ch¥d> ¥ haM,

being H a3 normal subgrow of & .
fAccording to this,

HC Sgl1) € 6 ’ (4>

and we can decompose € into cosets of Sg(yl.
If tys ... sty are the representatives of the cosets,

with t.,;=1 and 2 = |G|/|Sg¢v>| : H has 2 different
conjugate irreps given by

TRy = gt oty

Since <I|v> = <1/]H]> T xFemd xTao™ ,
heH

and Leghg™ !> = xfemy

we have Clrd> = <Cl1> for k=1, ... »2 .

In order to show that the restriction [y contains
only the irreps Tk » we induce the representation 10 from
¥ € irrepCcHd .

From Frobenius reciprocity theorem, and assuming
<Civ>¥B, it is clear that [ ¢ irrepi€> occurs in this
induced representation, and since the character of 1‘ can be
given by

x1c(h) -3 AT

i=s

-9.1
= 3 x i<hy ,

ims

we conclude that the 7y are the only irreps contairned in

T
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-5-
Then, we can write
&
xfehy = <o 2 2T,
ims

and from the orthogonality of the characters we have

&
<= 3 o<r|yy>®
1 i=s

= <rjv>* |8}/Isg¢1]

= ca/in]> = |zfmd|* s jel/n] .
hzH

It then follows that
<rle>? < |secr|/iM) . [

Mows, if the invariant subgroupr H of & is such that
|€M] = p ¢a prime number), from eguation (40 we have that
either Sg(1? = R or Sgl1? = 6 .

In the first case, equation (%) yields <[|y> = 1 and
consequent 1y

=3

FCh> = T 43¢<h,

i=1

Therefore, xr<g> =8 o g £ {8 — HY i a necessary
condition for Sgl(r> = H . But it is also a sufficient
condition because if Sgl¢> = & , there would be at least
ore conjugation class C of € contained in (€ -~ H} such that
xfee> we. But if xT¢g) m @ Y g € (6 - W), the equality
holds in equation ¢S) and therefore <Ir|»* = p  in
contradiction with our assumption that p is a prime number.

Since by hupothesis G/H ~ C, , there are in € at
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least ¢ one-dimensional representations Ay of the form
kn(tkﬂ) = o™ , with oPal and where t is the representative
of the coset of Hin €. Since we know that the characters
of the irrep [ of € [for Sg(l>=C] are different from zerc
for at least one class C C (6 - H)y we have that there are

in € at least p non—-equivalent irreps I, related by
k Kk k
FaCtThd & X (tTH> I <t ™hy
nk k
=w " Iget™hd 5, U hel , B<n<p and [ =TI .

From this, the orthogonality relations for the irreps
of G can be witten in the form

 jxfanl® + 2 MKkl e il = s 6] .
heH hsH

If we sum the p relations and note that
Lo
Zw
el

kn P ka ,

we obtain

p I 2T |® = l6] = p {H] .

hsH

This equation shows that [y is an irrep of H and
therefore <L|y> =1 ,

Since by definition a3 solvable group alwayxr has a
composition series such that its factor groups are cyclic
subgroups of prime order we conclude that a composition

series of a solvable group is always canonical.
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III.LADELS

lLet [ be an irrep of the group 6 with conjugation
classes C;. 1f || is the dimension of [, let us define an

operator

Pier = <Irj/lel> T xTcod*s = <Jrl/le]> X 2Feepd*sceydr, <o

a¢6 i
where jri
xf¢g> = I reody, and SCy> = I g
k=l 9<C,;

1

are the elements of the center of the algebra of G.
From the orthogonality relations for the characters

xr(g), it iz easy to proof that
plces PP e = spp. PO,

Moreover; we must note that if @ ‘= 9‘; Pr<¢) is a
self-adjoint operator and therefore, it is a erojection
operator.

On the other hand, if the elements of 6 are not unitary
apsrators, Pr(c) ix not a self-adjoint operator but if € is
a finite group it is aluays possible to take I(¢g>'= r¢g™!s,
and in this case the representations of Pl in the bases of
the irreps of €& are self-adjoint matrices. Thus s our
results are still valid.

Equation (6> can be inverted to give

sy = |F|7* 2 2feepy Pee <7

r
This equation shows that the representations of the
operators S(C;) within the space [[1> are given by diagonal
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matrices with eigenvalues xr<01)f|r|.
In arder to construct the self-adjoint operator which
labels the bases of the irreps of a finite group, we define

ihe operator given by

M = 3 n PP = 1 ay s¢cyd

n 1

where w; = |€]7* T n |r,| 2FccH>”.
"

Then, we see +that HN(B) can be calculated using only a
character table of the grour 6. '

Now, if we have a sequence B, 2 B 2 ... = 6y and
being b-1 an upper limit to the number of irreps of each
subgroup €; of the series, the labeling operator is defined
by

)

A= bk e .

k=0

Since the operators N(Gk) commute ¥ k, the eigenvalues
kj of A have the form kj Z Mgy see Ng o and are integetr
numbers in base b.

Let us take specifically the zequence

q:zﬂn. :ckxci:lll :clxci‘

where 6, are subgroups of o" (e.g. Caride and Zanette 1985).
e can define the corresponding labeling operator by

2

A= 1 100% wegp i
k=0

where+ i is the inversion operator. This definition allows
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the direct determination of the parity of the basis through
the sign of the eigenvalues. On the other hand, the irreps
which are symmetry adapted to the given chain, are also
adapted to sequences of the tupe

qtalll :ckxcinc,kailﬂjc‘;'

where the 6} are groups isomorphic to subgroups of o*.
Since a subgroup of 0;: i either a direct product of a
subgroup of o" and the inversion or it is isoworphic to a
subgroup of 0" we only need eight sets of adapted irreps
Ce.g. Nogueira et al 19867 to represent all the sequences of
uﬁ, esch set corresponding to one sequence of o*.

The calculation of the bases of the irreers of a2 group
G performed as if they were eigenfunctions of invariant
operators unables also the calculation of the Clebsch-Gordan
coefficients. Here we show that the use of the
eigenfunctions of the operator & drastically simplifies
the calculation of the coefficients.

Let |X3n> be an eigenfunction of A which appears as the
result of the couppling of the functions |Xy>|xz>» being n
ihe label for the repeated representations Xy in the product
space. Thaeny

agn> = X [Xg21x2> Aqxzlign> .
k‘l}sa

Appluina the operator A on this equation and after a simple
algebra we obtain

O Mo M XEY V25| 2gn> = X3 Ogda|xgn>
where

OO A X% = Ea; (X Oglelxi> Gzls|rg> -
i ﬂ(ci
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Ow choice of the bases forces the following congdition
on the matrix elements

Ofelx’> # @ (8 96> if and only if Inx1 < AL

Clearly, if we take this condition into account when
obtaining the Clebsch-Gordan coefficients, the number of

matrix elements to be calculated is greatly reduced.

IV. RESULTS AND DISCUSSION
Let € be a group with a series
co = ci ) LI = cn_ L ]

and let |X,v> be the functions which are linear combinat ions
of the basis vectors of a vector space V such that the
action of the operator A defined in Section 1I1 is given by

A Dov> =X [Xav>

where v numbers the linsar combinations which have the same
value OFf X = NgNgeeaNp
In order to obtain a solution for v, let us calculate
the matrix element of an operator ﬁi which is =uch that
to,H;1. = @ Y o 6
]

<h.v1ﬁi\1’,v‘> = <n°n1...n£.v|ﬁiin3ni...hi.v’> T 6rpee
=i K K

From this equation we see that if the eigenvalues of
the term ﬁo are ull different within each subset I%sv> for
fixed hs we can label uniquely the bases of &, which are

suametry adupted to the given sequence.
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Kramer and Moshingky (19662 have shown that this is the
cage of the invariant operator '?' of 0;,: obtained from the
#pherical harmonics Y, within the vector spaces Vja{]jm>}
for fixed j.

Mow we are going to show that we can add to A operator
another term such that we will have a new self-adjoint
operator with real eigenvalues consisting in an integer part
Cwhich iz the old eigernvalue X of A and a non—integer part
corresponding to the eigenvalue of the operator ?.

Following Fox &t al (1977)> we write

T = €3/7¢2a410272 T, + 173, <@
with To= €112/3¢23-3>,3%/% ¢-33% + 3% + 5¢3% + 33+ 3%,

where the Ji Ci=142,3? are the components of the angular

moment um J and,

Then we define the new operator by
]

Fa l__k ol .

U« (¥ 10 NCG.> + T2 i
k=0

where the &, are subgroups of O or ﬂﬂ and,; from equation
CBdy the eigenvalues ¢ of T are in the interval <8,5/6>.
Since ? commutes with every element geb it also commutes

oy

with A and therefore, the sigenvalues of U are given by
U=t (nghy oee Natid,

where the sign + (- denotes that the subspace is even (odd)
under the inversion operation.

It ix important to note that the eigenvalues of ﬁ solve
the problem of clustering observed by Fox et al in the
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eigenvalue spectrum of the operator T = Taeqs for J§ > 20.
Clearly, the considerations about T,,, can be extended
to the operator Tg., which has the same tupe of tridiagonal
matrix representation in the same subspace. This allows us
to conclude that the bases of the operators A + aT,,, and
A+ aT,n, + BTga;, € and B arbitrary constantsd are the
more convenient functions (o study problems refering to

localized d and ¥ electrons.
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