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ABSTRACT

We introduce a new prescription to deal with boundary terms in the
Hamiltonian formulatlon of General Relatlivity. Under this prescription the
equations of motion are correctly obtained, and the Miller energy integral for
asymptotically stationary gravitational flelds arises as the natural
definition of energy. This definitlon agrees with the gravitational mass
obtained from the geodesic motion of a test particle, in the case of

asymptotically flat and asymptotically Anti-DeSitter spacetimes.

Key-words: Gravitatlonal energy; Definition of gravitational mass; General
relativity; Hamiltonian formulation; Surface terms; Asymptotic anti-DeSitter

spacetimes.
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The definition of the gravitational energy 1iIs a fundamental and
longstanding problem in the Thecry of General Relativity of the gravitational
field., The absence of an energy-momentum tensor and the arbitrariness in the

[1,2,3,4]

definition of a conserved energy-momentum pseuso-tensor from one

side, and the appearence of various possible surface terms in the Hamiltonian

IS, 6]

formulation of General Relativity for open spaces from the other, shows

that a unique definition of the gravitational energy is not obvlous.

In a classical paperlT]

» Regge and Teitelbolm tried to solve thls problem
from the Hamiltonian point of view, arguing that the surface terms that appear
in open spaces problems are necessary and can be determined uniquely for each

case by consistency of the Hamiltonian formulation. In fact, let us conslder

the Hamiltonian of General Relativityls]

1

. = 5 I d’x{ﬂ(xm{x) + Nl(xmf(x)} 1)

where

kK _ 172 (3)

.= 1)
H(x) : G”ﬂu n ¥ R
#(x) = ~ zu‘{j
_1 _-1s2 _
Gijks =37 (71k712 * T ~ "%,

(3)R is the scalar curvature of spacelike hypersurfaces xo = const. and 711 is
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the 3-metric of these surfaces, nlj its canonical momentum, ¥ its determinant,
N the lapse function and N: the shift function. The semi-colon denotes a
covariariant derivative based on 7if

Regge and Teltelboim argue in their paper that wvariatlions in the
Hamiltonian Hb’ defined in (1), lead to surface terms (due to the appearance

of first and second order derivatives of the canonical variables) that may be

different from zero for arbitrary open spaces. In fact they showed that
= 1 3 1}  § JEE
SH_ = & I a x[a”an + B a';”] .

N 1 § dzs {_ NGabc£57 . [N Gabc! _ ZNb“aC .
£ abse Y

+ Nzuab] 3 - 2N auas} (2)
ab a
where G"‘me is the inverse of G”k£ and is glven by:
gl .. % 71/2[7@1& R 7&27131: _ Zycbwcl]

The tensors A” and B/ correspond to the right-hand side of the flrst

order Einstein’'s equations written in the formlg]

7! = - gt} (3.a,b)

-l
B
-

i) 51

Thus we see that if the surface terms appearing in eq. (2) are zero, which is
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the case of closed spaces, the Hamiltenian Ho given by eq. (1) ylelds the

correct Einsten’s equations in the Hamiltonian form

. 6HO )
” = — (4.3}
1 Gnij
SH
w9 (4.b)
6711

However, if we are dealing with open spaces and the surface terms that are
present in eq. {2) are not zero, the Hamiltonian Ho does not give Einstein's
equations in the form of eqs. (4) and boundary terms have to be ammended to
the Hamiltonlan H0 in order to deflne a new Hamiltonian H that ylelds the
correct Einstein’s equations. For Instance, if we are dealing with

asymptotically flat spacetimes, the correct Hamiltonian is

3
1 2
B=H"*& § ) [’xe.: - 711,!] | (5)

i=1
where variations of the surface terme appearing in eq. (5) cancels exactly
the non-vanishing contributions due to HE and exhibited in eq. (2), yielding

the equation

[}

{

SH I d3x{a”(x)a;ru(x) +'B”(xm”(x1}

Thus the correct Hamiltonian obtained by the Regge-Teitelboin procedure for
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asymptotically flat spacetimes is given by eq. (5) and the energy of such

gravitational fields is glven by

3 .
E=& 1; d Sk 1)_:1 [Vuc,l 71:.1:] (6)

The value of Ho is always zero due to the existence of the gravitational
constraints,

With this line of reasoning, it is possible to obtaln a unique and
necessary surface term for each open sﬁace with a well defined asymptotic
behaviour and a correspondent gravitational energy. However, this method is
not aesthetically appealing because it does not provide a unique formula for
the gravitational energy: for each case of asymptotic behaviour we have to
evaluate the surface integral coming from eq. (2) that will correspond to the
gravitational energy of the space In consideration. This fact makes
impossible a general proof of the positivity of energy in General Relativity
for every asymptotic behavlour.

Because of that, we propose a new method te obtaln the energy of the
gravitational field that ylelds a wunique surface 1ntegral for every
asymptotic behaviour.

First of all define a new variation &

F(¢r(x)) = [ fF - af + [——%E;- - st 0
3¢" (x) 8¢’1 o1 ¢s|sj e1a]

where F[¢A(x)] is an arbitrary functional of general field ¢A(x). The action
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of this & varlation on a surface term is obviously zero and we can write

Einstein’s equations for every spacetime as:

. SHO
1] 1] 1
an
3H
vy _ o _ _ pls _ .
= 61‘) B (7.0)

We remark that the main feature of the varliation & is to glve automatically
the equations of motion without having to identify (and eliminate) volume
integrals which yleld non-zero surface terms.

Now, the Hamiltonlan that comes naturally from the Lagranglan of General

Relativity

I v-g Ra*x + %E I dtdsx[wxlikl. (8)

Lo -
2l

after making the 3 + 1 splitting of spacetime is given by

H=H + g'ﬁ § dzsz{a'uzarkzN’k + uktNk + - % uNz} (9)

o

For closed spaces the surface term appearing 1in (9) is zero and the
Hamiltonian reduces to Ho' For open spaces however, thls surface term - that
does not contribute to eq. (7) because of the definition of the 3§

variation - may have an absolute value diferent from zero, We thus propose,
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in the context of this & variation, that the gravitational energy of every

open space 1s given by the surface integral
_ 2 2 172_k k., 1 ¢ -
E = _8—1'; § d St{'x ¥ zN’k + I LNk '2— TIN} (10)

The advantage of this formulation is obvlous: the gravitational energy of open
spaces is given by a single surface Integral which, as can be shown by
straightforward calculations, corresponds to the Mdller energyl21 for
statlionary spacetimes,

We will now compare the energies given by eq. (2) and eq. (10) for
different asymptotic behaviours of space-time.

We will examine two cases: asymptotically flat and asymptotically

Anti-DeSitter spacetimes.

1) Asymptotically Flat Spacetime
Any solution of Einstein’'s equations with finite energy which 1is

asymptotically flat behaves at spatial infinity like

i} .
ds® ~ - [1 - %Ethz + [al +2m X : ]dx‘dxj (11)
r - ] r

A stralghforward calculatlon of the surface integral given by equation (6)

gives

E=2n {(12)
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Using now our definition of energy in equation (10) we obtain
E=n (13)

differing from the former by a multiplicative factor. The significance of

this difference will be discussed later.

1i) Asymptotically Anti-DeSitter (ADS) spacetimes
We willl consider the Kerr-Anti-DeSitter solution which has the
Sckwarzschild-Anti-DeSitter solution as a special case.

The Anti-DeSitter line element is given by

-1
dsz = - [1 + [;-_l]z]dtz + [1 + [%]Z] dr® + d0° (14)

where dQ° = ro(de® + sin29d¢2) and R is the radlus of curvature.

The deviations from the Antl-DeSitter background at the spatial

tnfinity are given byjioh

2m 2 . 2.1 -3
htt = F_[l - a"sin B] + 0(r ") {15.a)

2 =-5/2
to = - g.a;n.liA?.[i - azsinzel + O(I‘-s) (15.b]

2 4 ~5/2
b, = .%@_a}ﬁm[l - .,351,,29] £ 0(r™Y (15.¢)
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-
4 —3s2 : '
h = gEE—[1 - azsinaB] + O(r-7] (15.d)
o o rS
22 -5/2
h'r = - sz a [1 - a?sinzel sinfcose + O(rﬂsl (15.e)
r
2ma’ 2. 217% 2 2 -5 :
h.o = = [1 - a'sin G] sin“ecos”® + 0(r ) (15.f)
r

where o = a/R and a is related to the angular momentum per unit mass. The

non-vanishing components of the gravitational momentum are:

-5/2
Rt = - JamSind [1 - ocasinze] +0(r™ (16.a)
r
°* = 0(r™®) (16.b)

In ref. [10], the non-vanishing surface terms appearing in eq, (2) are
calculated for asymptotically Anti-DeSitter spacetimes and the energy for the

Kerr-ADS metric is calculated yielding

E = --—--2lu (’-7)

(1 - o®)?
Note that as R goes to infinity (« goes to zero) this energy goes to its

value for asymptotically flat spacetime as should be expected.

In our definition of energy, the nonvanlshing terms are given by
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_1 2 172 -
E-ﬁ§ds’_27 7N (18)

{0
= +
where zr” g | hl_l'

(g:j denoting the spatial metric of ADS spacetime. The surface integral has

divergent volume dependent terms coming from the infinite gravitational energy
of the ADS background that are authomatically excluded from the former case
because the variations conslidered in éq. (2) are supposed to preserve the
background structure. Thus, taking solely the finite value of the Integral

(18) we obtain

o g 1+
(1 - &2

E (19)

which also goes to the asymptotically flat case when R goes to infinity (and
consequently « goes to zero). Comparison with eqs. (19) and (17) shows
different wvalues for the gravitational energy, arlsing from the two
definitions.

We now argue in favor of the latter, by using a definition of the
gravitational mass from a completely different peint of view: the geodesic
motion of a test particle in Anti-de Sitter and Kerr-ADS backgrounds.

We will proceed as in the Newtonlian limit of General Relatlvity. As we
know, the concept of mass in General Relativity is well defined for

asymptotically flat spacetimes and mass 1is defined In comparison to the
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Newtonian 1imit. Here we extend this definition for asymptotically ADS

spacetimes. We lmpose two limiting conditions:

i) at spatial infinity {(r » o) the background is ADS plus small Kerr-ADS
deviations {as given by (15}).

11) the velocities of all bodles along geodesics of ADS asymptotic background
are small, and we will take the approximation which consists In keeping
only first-order terms in the deviations (i) and/or {(ii).

Under these conditions the asymptotic ADS group redﬁces to the Gallleo
group, and the gravitational mass of the Newtonlian-llke fleld ~ which is a
deviation of the ADS asymptotic background - produces the deviation in
acceleration given by the four-vector.

o« _d a%x™

x
A" = - (20)
ds® ds'??2 _

which, in the approximation considered, has the non-zero components

(0) (0}

h

1 _ _ 11_j1 1 i 00

b= [{o 0}_ {o o}] o {o o} (02 (21)
B L

Here s and s‘O) are, respectively the proper-time along a geodesic of the

Kerr-ADS metric and the proper-time along a geodesic of ADS background
metric. In general a superscript (0) denotes a geometrical quantity of the
ADS background metric,

a' is a measure of the deviation of the aceleration of bodies along ADS

geodesics, produced by the Kerr-ADS perturbations. Thus, the asymptotic
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gravitatlonal mass can be defined by

_1 — x2e _ 1 - 1
Mq—4—“§\/—g‘adsu-ﬁ§\/“gAdzsl
r=cons-M racont-wo
which gives, for (21),
2
M o=m (1+ ué)z (22)
g (1 - «)

which is the value of the Mdller energy (19).

Thus, our definition of energy given in eq. (10) agrees with the mass
definition from geodesic motion while the Regge-Teitelboim definition that
comes from eq. (2) does not. The difference by a constant factor of the
values of the Regge-Teitelboim and Mdller energies fon aoymplatically Hat
opacetime (egs. (12) and (13)}) is irrelevant: it is a matter of definiiion of
the non-gravitational energy-momentum tensor, which fixes the multiplicative
constant of the gravitatlicenal action by the Newtonian approximation. However,
the difference in the values given in eqgs. (17) and (19) is fundamental and
the geodesic motion definition of mass is cwicial in order to decide which
definition of energy is correct. To our knowledge, it was the first time that
a mass definition from geodesic motion was given for non-asymptotically flat
spacetimes.

We are now undertaking the evaluation of the energy integral {eq. (9))
for other asymptotic behaviocurs, and for a class of non-stationary spacetimes
which present gravitational waves at asymptotic Infinity. We also 1intend to

examine the problem of positiveness of this energy integral.
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