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Abstract

We derive the Teixeira, Wolk and Som method [1], for obtaining electro-
static solutions from given vacuwm solutions, in its inverse form. Then we use
it to obtain the geometrical mass My in the Schwarzschild spacetime, and we
find Mg = M? — @Q?, where M and Q are, respectively, the mass and charge
parameters of the Reissner-Nordstrom spacetime. We compare Mg to the
corresponding active gravitational mass and mass function.
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1 Introduction

For a bounded spherically symmetric static distribution of matter the total mass
is well defined. We know that outside of the distribution the spacetime must be
described by the Schwarzschild spacetime, therefore it follows from the junction
conditions (2] that the total mass of the system is equal to the Schwarzschild mass
parameter [3]. However the definition of the total effective mass content within a
given spherical surface inside a non vacuum spacetime is not unique. This ambiguity
has been the subject of long discussions, giving rise to different definitions of energy
(see references given in [4])

Our aim in this article is to revisit the question of effective mass in the Reissner-
Nordstrém (RN) spacetime.

The study of charged bodies in Einstein’s theory contributes to better understand
the structure of spacetime, as it is showed by many new solutions recently studied
for electrovacuum (see (5, 6] and references therein) and different charged sources
(see [7, 8] and references therein). For the spherically symmetric static spacetime
the solution of the coupled Einstein and Maxwell equations is the RN solution. This
solution is the unique black hole solution with a regular event horizon and assymp-
totically flat behaviour. The RN spacetime provides a more general framework to
study the structure of Schwarzschild spacetime. The fact that RN solution has two
horizons, an external event horizon and an internal Cauchy horizon, provides a con-
venient bridge to the study of the Kerr solution, as pointed out by Chandrasekhar
[9]. Furthermore, the RN field can be used as a simple model of the electron, as
suggested by Bonnor and Cooperstock [10]. We point out too, that the study of the
effective mass in the RN spacetime might help to find the corresponding one in the
Kerr spacetime.

To study the effective mass in RN spacetime we determine the corresponding
Schwarzschild spacetime, henceforth, the Schwarzschild mass parameter, thus ob-
tained, corresponds to the so called geometrical mass in the RN spacetime. In order
to obtain this correspondence we study a class of solutions where we impose that the
metric component gy is functionally related to the electrostatic potential ¢. This
technique of determining solutions of Einstein and Maxwell equations is not new.
It started with a remarkable paper by Weyl in 1917 [11], where he found a class of
electrostatic cylindrically symmetric solutions by imposing that g:(¢). Majumdar
in 1947 [12] generalized this result to systems without spatial symmetry. The inclu-
sion of solutions with magnetostatic fields came through the works of Papapetrou in
1947 [13] and Bonnor in 1954 [14]. But in 1955 Ehlers [15] gave a new approach to
generate solutions of Einstein and Maxwell equations by starting from given vacuum
solutions. Later, in the same vein, other solutions were found by Bonnor in 1961 [16]
and Janis, Robinson and Winicour in 1967 [17). However, all these solutions have
the handicap of not switching back, in a simple way, to its original vacuum solu-
tion. This difficulty was overcomed in 1976 by Teixeira, Wolk and Som (TWS). By
using the operation of duality rotation they were able to introduce simultaneously
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electrostatic and magnetostatic fields, having the feature that by a proper choice of
the constants the original vacuum solution emerged in a straightforward way. This
work generalizes the previous results [15, 16, 17]. In 1977 Som, Santos and Teixeira
[18] applied the TWS method to obtain the RN solution from the Schwarzschild
solution. This result was reobtained recently [19].

The plan of the paper is as follows. In section 2 we derive the method developed
by TWS [1] in its inverse form, i.e., given a solution of the Einstein and Maxwell
equations how to find its corresponding vacuum solution. Next, we apply the inverse
method to obtain the corresponding Schwarzschild spacetime to the RN spacetime.
By doing this we deduce the geometrical mass in the RN spacetime. In sections 3
and 4 we obtain the active gravitational mass and mass function in the RN spacetime
and compare to the results of section 2. There is a discussion in the last section.

2 The geometrical mass

Here we present a method for deriving a class of vacuum solutions of Einstein’s
equations out of a given solution of Einstein and Maxwell equations. The class of
solutions that we search for is when we impose that the g, metric component of the
vacuum solution is functionally related to the same component of the electrovacuum
solution. This method is the inverse of the TWS method [1]. Then we apply this
method to deduce the Schwarzschild solution from the RN solution.

2.1 The inverse of the TWS method
We consider the static line element corresponding to the electrovac solution
ds® = e?dt? — e hydx'da, (1)

where 4 and h;; are functions of the spatial components z* (latin indices run from
1 to 3). The Maxwell’s equations in empty space read

P, =0, @
P Fovp = 0, (3)

with €79 the totally antisymmetric tensor (greek indices run from 0 to 3) with
convention €°*® = 1. From (1) and (3) the electromagnetic field tensor F,, can be
written with the static non null components

F 0= ""‘ﬁ,i: (4)
where ¢ is the electrostatic potential. Substituting (1) and (4) into (2) we obtain

( h1f2 o2 h"jti),g),j =0, (5)
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with % being the determinant of the spatial metric 4;;. Einstein electrovac equations
read

Guw=krE, =& (QaﬁFapFﬁv - ZngaﬂFaﬁ) : (6)
where G, is the Einstein tensor and E,, is the electromagnetic energy tensor.
Substituting (1) and (4) into (6) gives

VR (RYPRIY) 5 = BTG kb, (7)
Hyj+ 29 p; = -2 %0, (8)
where H;; is the Ricci tensor in the 3 dimensional space.

If we consider now the static line element representing a solution of the Einstein
equations in the vacuum:

ds? = e?Vdt* ~ e~V h;;dxtdad, (9

with V function of =¥, the corresponding Einstein equations read:
(RY2h9V;) 5 = 0, (10)
Htjj + 21/’,;th = 0 (11)

We can then formulate the inverse of the TWS problem. Starting from a static
solution (4, hy;, ¢} of Maxwell equations (5) and Einstein electrovac equations (7)
and (8), we want to obtain the corresponding Einstein vacuum solution (V, h;;). We
then search for a class of solutions where V is functionally related to 1.

From (5) and (10), we obtain

aV; = e g, (12)

where a is an integration constant. Substituting (11) into (8) and considering (12),
we get

Vi=(1+a%) 1y, (13)
By integration, (13) leads to
14 (1+a2)2 1?
W _ 2
e =e [1 + (1 +a%e®)iz | (14)

where we have chosen the integration constant such that when a = 0, the electric
field is zero and the electrovac solution (1) reduces to the vacuum solution (9).
Introducing (12) into (7) with (13) yields

_ a’e®
T 14 a2

which means that the constant a is determined by the parameters involved in % and

hij.

h—lﬂ (hlﬂhﬁjw,i),j hm¢,k¢,ma (15)
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2.2 Schwarzschild solution from a RN solution

We now apply the preceding method to determine the Schwarzschild solution asso-
ciated with a RN metric. First, substituting the RN line element,

4

2 ay —1
d32= 1—%-}-9—- dt2“ l_m_i_Q_ drz_rzdﬂ2, . (16)

into (15) we find for \
a'MS = Q: (17)

where
Mg = (M? - Q)2 (18)

We see from (17) that when @ = 0 then Q@ = 0, reducing the RN spacetime (16) to
the vacuum Schwarzschild spacetime. The term €?¥ in (1) can be expressed from
(16), with the aid of (18}, as

v _ (1= Ms = M)(r+ Ms - M)

" (19)
Substituting (17) and (19) into (14) we obtain
2M,
v _ g _ Mg
e’ =1 gy v 2 (20)
Considering (20), the vacuum solution (9) becomes
-1
ds? = [1— 2Ms dt® — [ 1- 2Ms dR? — R%d02, (21)
R R
where R is given by
R=r+Ms— M. (22)

Hence, the corresponding vacuum solution to the RN spacetime is the Schwarzschild
spacetime (21) with geometrical mass Mg = (M? — @*)*/? and with a scale shift
(22) in the radial coordinate R.
The event horizon r.; and the Cauchy horizon ¢y, for the RN spacetime (16)
are then
rea =M+ Mg, ren =M — Mg, (23)

while for the corresponding Schwarzschild spacetime (21) these two surfaces repre-
sent, respectively, the event horizon R, and singularity Ry,

Rp=ren+Mg—M=2Ms, Ro=rcn+Ms—-—M=0. (24)
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3 The active gravitational mass

The active gravitational mass density y, given by Tolman [20] and Whittaker [21],
is for the field equations (6) ‘

M= EO 0 E is * (25)
and the total active gravitational mass within a volume V, coming out from the
work of Whittaker [21] reads

M, = [ n(-9)dstacas?, (26)
1%

where g is the four dimensional determinant of the metric. Applying (26) to the RN
spacetime (16) we find

oo M2
My(o0) — Molr) = [ (@)
which, assuming that M (co) = M, leads to
2
M =m-< (29)

The active mass is positive or null for r > ro = Q*/M with rep < 79 < Ten. It can
take negative values for r < rp and this possibility has been discussed in a number
of papers [10, 22, 23, 24|. The active gravitational mass (28) for the event horizon
and Cauchy horizon are, respectively,

Mo(ren) = Ms, M,(rcn) = —Ms. (29)

The spacetime external to r = 7. is very similar to the Schwarzschild spacetime
external to the surface r = 2My (see discussion in [9] p. 209). Hence the surface
r = T is an event horizon in the same sense that r = 2Mg in Schwarzschild
spacetime. However, the spacetime internal to r = r¢, has a completely different
structure as compared to the Schwarzschild spacetime (refer again to [9]). It is
interesting that the active gravitational mass (28) measures in RN spacetime the
corresponding Schwarzschild mass at r = rep.
The electric field E due to (16) is

=2 (30)

and from (5) the corresponding non-relativistic Maxwell energy, Mg(r,o0), en-
trapped outside the spherical surface of radius r is given by

Mg(r,00) = %/w E*ridr. (31)
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Using (30) and (31), the active gravitational mass (28) can be rewritten
Mu(r)y =M - 2Mg(r,00). . (32)

From (32) we have that M,(r) is the total active gravitational mass minus twice the
mass equivalent to the non-relativistic energy stored by the electric field E outside
the spherical surface of radius r.

Calculating the circular geodesics in the equatorial plane and the radial geodesics
of RN spacetime for a chargeless particle we obtain, respectively, from (16) and (28),

i3 (4-9) -5 (2 -1 (- 9)- 0 o

dr? r2 r2 dr r3 r 3

where 7 is the proper time. The motion of a chargeless particle will then be affected
by the charge of the black hole eventually producing repulsive forces for sufficiently
small values of r. The active gravitational mass casts locally the equations of motion
in a Newtonian like form.

4 The mass function

There exists a further different way to define the gravitational mass of a system. If
we match a spherical distribution of matter to the exterior Schwarzschild spacetime
we obtain at the surface of discontinuity the Schwarzschild mass being equal to
TR%45/2 where Repge is a Riemann tensor component. The interpretation of this
mass as the total mass inside the sphere suggests that the total mass entrapped
inside a sphere of radius r, called the mass function, may be defined by
1

M(r) = ErR%,w. (34)
This definition has been first considered by May and White [25] and since currently
used in gravitational collapse (26, 27, 28, 29, 30]. For RN spacetime (16) we have
for (34}

&
Myr)=M -, (35)
where .
M = -2'T'C¢g¢g, (36)

C%g4p being a Weyl tensor component. M is called the pure gravitational mass,
since it arises only from the Weyl tensor. The mass function is always positive or
null for r > ry = Q?/2M with r; = ry/2 inside the event horizon. Negative values
for My(r) for r < r, are considered in [31]. The mass function (35) at the event
horizon and Cauchy horizon (23) are, respectively,

Miy(ron) = (M + M), Mylron) = 3 (M - M) (37)
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Considering (30) and (31) we have
Mf(r) =M - ME(ra 00)1 - (38)

which can be compared to (32). ,

5 Discussion

We have presented the TWS method [1] in its inverse form and applied it to obtain
the vacuum Schwarzschild solution from the electrovacuum RN solution. The vac-
uum metric thus derived has a geometrical mass Mg (17). Then we calculate for RN
spacetime its active gravitational mass (28) and mass function (35). Both results are
equal to M asymptotically but, in general, differ. This illustrates the ambiguity in
the localization of energy. We compare M,(r) and M;(r) with Mg at the horizons,
respectively (29) and (37), and obtain that M,(res) = Ms. This result is not so
surprising because of the following reasons. The structure of the event horizon for
RN spacetime and Schwarzshild spacetime are similar [9]. The equations of motion
(33) are cast in a locally Newtonian like form with the aid of the active gravita-
tional mass. Furthermore, Herrera and Santos [4] by analysing the energy content
of a slowly collapsing gravitating sphere conclude that the active gravitating mass
grasps better the physical content of matter than the mass function. Hence we can
say that our results give further support the physical meaningfulness of M,(r).
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