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ABSTRACT

The dependence of Casimir energy (associated to a massless
scalar field) on spacetime dimensionality (D) is shown to be
strongly entangled with the type of the geometric bounds and the
kind of macroscopic boundary conditions imposed to the field. In
the case of massless scalar field satisfying Dirichlet b.c. in the
presence of a hyperparallelepipedal cavity with p sides of finite
length L and D-p~1 sides with length much greater than L, a new
compact integral formula, more suitable to analyze the nature of
the Casimir force, is obtained. The force results to be attractive
if p is odd or for very large even values of p, irrespective of D.
For each small even p there exists a critical spacetime dimension
Dc(p) such that: the force is repulsive if D < D, and attractive
otherwise. As a consequence of these results, the instability of

}

the semiclassical Abraham-lorentz-Casimir model of the electron is

proved to depend on the spacetime dimensionality.

' Key-words: Quantum field theory; Vacuum energy; Benormalization.
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1. Introduction

The question whether the Casimir effect for different
geometries and spacetime dimensions gives rise to an attractive or
repulsive force between the configuration boundaries that confine
the field (and its physical consequences) is up till now unsolved
and will be discussed in this paper.

Actually, in the general case of a D-dimensional spacetime
the sign of the“Casimir energy may depend on: i} the spacetime
dimensionality, ii) the type of boundary conditions, iii) the
number (p) of independent directions with finite ‘extension of the
space region that constrains the fields, iv) the ratio of these
finite characteristic lengths, v) other topological features of
spacetime (e.g. compactness), vi) the spacetime metric, vii) the
temperature.

In this paper the consequences of (iv-vii) will not be
discussed and the interested reader is referred to [1-10]. However,
it is useful to note that in Ref. [1] it is argued that the Casimir
energy as*ociated with an electromagnetic field quantized inside a
perfectly conducting box of sides Ll' L, and L,, may change sign
depending on the relative lengths, which indeed suggests a strong
dependence on p. In Ref. [2] a similar behavior is shown to occur
in the case of a massless scalar field in a three-dimensional
parallelepipedal cavity with Dirichlet boundary conditions.

That there is a dependence on the geometric shape of the
cavity is evident from early exact computations of Casimir energy
at zero temperature, associated with massless scalar and
electromagnetic fields, for a few different kinds of geometric

configurations, like parallel plates [11-14], a cube [1,15], a
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cylinder [16-18) and a spherical shell [19-22) in four-dimensional
Minkowski spacetime.

The search for a unification scheme of forces in higher
dimensional spacetime renders of physical interest the question of
what one can learn about particular features of the Casimir effect
in going to spaces with an arbitrary number of dimensions (23-26].
For a massless scalar field quantized inside a box with p sides of
finite characte;iStic length of order L and D-1-p sides with
characteristic length A>>L, the sign of the Casimir energy density

={p)

e depends crucially on the boundary conditions [23]. In the case

of Neumann and periodic boundary conditions it is straightforward
to see that E;p' is always negative. For Dirichlet boundary
conditions, numerical computations for different values of D and P
up to D=6 seem to indicate that the sign of E;” depends on whether
p is even or odd [23)].

The main aim of this paper is to throw some light on this

kind of dependence and it is organized as follows: in Sect. 2 the

(p)

expresgion for the Casimir energy density Ch

in a D-dimensional
Minkowski spacetime is obtained in terms of a sum of Epstein
functions. Ih Sect. 3 the summation is performed yielding a new
compact integral representation of E;p’ which is more suitable to
discuss its sign. In particular, the above conjecture that the sign
of E;” depends on whether p is even or odd is discussed and
demonstrated to be only partially true. Indeed, when the number of
finite anad equall edges of a rectangular box (p) is odd it is
analytically shown that E;’)<0 for any D. However when p is even

we get a new and surprising result, namely: either the Casinmir

energy 1is always negative irrespective of the value of D (this
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happens only when p =30) or there exists a particular critical
value of spacetime dimension (D), which depends on p, such that
for D<D_ , E;”t 0 and for D:D_ , E;" is shown to be always
negative. Numerical results, giving an account of the dependence
of Dc on p, as well as the Casimir energy densities for several
combinations of D and p are given in Table I. Some concluding
remarks are presented in Sect. 4. In particular it is argued that,
as a consequence'bf the new results mentioned above, it comes out a
new insight on why, in a four-dimensional Minkowski spacetime, the
semiclassical Abraham-Lorentz-Casimir model of the electron
fails.All these results, for the sake of simplicity, were obtained
in a D-dimensional noncompact (Minkowskian) manifold where

rectangular cavities are constructed to trap the scalar field.

Useful mathematical results are given in the Appendix.
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2, Casimir Energy of a Hermitian massless scalar field in a
D-dimensional Minkowski spacetime

In this Section some problems concerning the zero-point
energy in Quantum Field Theory are briefly discussed and the
expression of the Casimir energy density is obtained for the
simple case of the scalar field.

To quantize a Classical Field Theory in a canonical
quantization scheme one essentialy needs to know: the operator
algebra, the dynamical equat.{ons and how to construct physical
states (Iincluding the vacuum state). In such: a scheme, the
ordering of non-commuting operators in the field Hamiltonian is
not fixed a priori, giving rise to zero-point energies which are
divergent. Thus, one may wbnder how zero-point fluctuations and
the associated energy should be interpreted.

This problem may be circumvented by arguing that actually
one does not measure absolute energy values, but only enerqgy
differences. This is exactly what is done when Wick’s normal
ordering is imposed to the field operators. Following this
prescription, an infinite amount of energy is subtracted from the
vacuun state in such a way that the net energy results to be zero.
An important argument supporting this procedure is based on the
demonstration that the expected value of the enert_:,[y-n:sn::ur:u-':m:um;Jr
tensor in the vacuum state should be zero to ensure that the
correct commutation relations of the Lie algebra are indeed
satisfied by the generators of the Poincaré group [27]. This
result clearly depends on the fact that vacuum state is defined on
a space with no bounds. But what happens when fields are to be

guantized in a confined spatial region? How does one interpret
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zero-point fluctuations and the associated energy in such cases
where the Poincaré symmetry of spacetime is globally broken?

The interest in these gquestions was sharpened after
Casimir’s work [28]. In 1948, he showed that neutral perfectly
conducting parallel plates in vacuum attract each other.
Experimental verifications of this effect (known as Casimir
effect) [29) show how vacuum fluctuations may give rise to
measurable quanéities and, therefore, are an evidence that, in
general, the vacuum state energy of a quantized field may be not
well defined by normal ordering. Then the above vacuum state
definition is to be revised.

As stressed in (30}, Casimir adopted a new concept of
vacuum enerdgy, by assuming that "a meaningful definition of the
physical vacuum must take into account that in a real situation
quantum fields always exist in the presence of external
constraints, i.e., in interaction with matter or other external
fields. An idealized description of such circumstances is obtained
by forcing the field to satisfy certain boundary conditions". In,
other words, according to Casimir, the energy of the physical
vacuun state is defined as the field energy in the presence of
minus its value in the absence of such conditions (this is what is
often called Casimir energy). So, it is clear th;t the Casimir
energy may, in principle, depend on the particular choice of the
geometry defined by the confining configuration, on the topology
of space where the field is given and on the type of boundary
conditions, |

In Minkowski spacetime such a scheme can be implemented

for simple geometric configurations as mentioned in Sect. 1.
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Different renormalizatién techniqgues [30] are wused in those
calculations and can be classified as particular cases of two
general wmwethods. One of them is the Green’s function method
[13,31,32] and the other one is based on the direct evaluation of
an infinite sum over all normal modes, allowed for those particular
geometries, which can be implemented by using a cut-off method
(11,12,28], the' zeta-function technique {[14,15] or a dimensional
regularization procedure [23]. Although the Green’s function method
is known to be more fundamental, it presents technical difficulties
so far parallelepipedal geometric configurations (p > 2) are
considered, which are swept away by the zeta-function techniques.
Hence the later method will be adopted throughout this paper.

A Hermitian massless scalar field Q(xo,x') defined in a
D-dimensional Minkowski spacetime should satisfy a generalized

Klein-Gordon equation (in Cartesian coordinates with h=c=1);

2 D-1 2
a a o 1
= - — ¢(x ,x) =0 2.1
[ [8x°] Jzi [8x’] ] ( e

If the field is confined in the interior of a

(D-1)~dimensional rectangular cavity with edges L, L

2' aawg L r

D-1
it can be expanded over the complete orthonormal set of mode

solutions {¢n, ¢:} as follows:

$(x) =

a
o n N [ nn...n_‘nn...n_
1 z... D-

1

* *

+ a ¢ (2.2)
nn,...n_ "nn.. 'nn-x]

Imposing Dirichlet boundary conditions on the box surface a0,
i.e., Q(x)|8n = 0, we have
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0 nn nmn
¢ = f (x) sin 1" x sin 2 X eus
ninz. . .l'ln‘l n’nzn L] ann_‘ _Ll 1 Lz 2
L ) Bin nb"ln xn_i {2.3)
LD-l

where the n, are positive integers. In the canonical quantization

scheme a' and a are creation and annihilation
nl 2"'“0-1 !11r12l..nn-1

operators of field quanta with energy spectrum w{n} given by ({n}
):

stands for a short notation of nn,...n

2 2 2 .Y
W, = e Sl R 4 uur 4 |ma” 2 (2.4)
int L L, Lo . |

Different boundary conditions can be imposed on the

surface (3}, like Neumann (ﬁl Blt(x)lan = 0 where i is a unitary
vector orthogonal to the surface 81) or periodic conditions (as in
a torus). Since, for both conditions, the Casimir energy density is
shown to be always negative for any value of D and p [23]), the link
between the attractive or repulsive nature of the Casimir effect
and the geometry will be discussed hereafter only for Dirichlet
boundary conditions.
Let us briefly review how tﬁe Casimir energy inside a

(D-1)-dimensional rectangular box is obtained from the divergent

expression
1 2 nn 2 n,n 2
E (L sLyeee by ) = —5— [ E " + I + .00+
“i“a”'“n-:' 1 .
2 /2
+ + -y ¥ (2.5)
Tt L__.
D—1
In the limit

and, for simplicity (without loss of generality for our purpose)

assuming Llu Lz « .,, = Lp-= L, we define the energy density
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(energy per unit hyperarea), c:"(L), as a function of the number p

of finite length edges:

E(p)
(L)= - > = lb-p-l 'DEP"I
T (2vm) r [ RE < ]

1=p+] L]

- 2
x E dr 72| r? + [ n, "] + oee. +
L

I'.I1I'I2. - tl'lp‘ 1

ip}

o

1 2 4 /2
+oeee + (DT ] ] (2.6)

This divergent density may be regularized using the techniques of

Ref. [14,15] giving the finite value for the Casimir energy:

p-1
- p-D -
e (L) :‘m qzo (-1) %' (vin) ¢ F[qu—] A(1l,...,1:D-q) (2.7)

where there are p-q terms (1, ..., 1) as arguments of the Epstein

function defined as {33)

& o

-s
. - E 2 2 2
A(a ,a,,...,a ;28) [ an, + an, +...+ an ] (2.8)
nlnz " l'lk!-ﬁ

for a >0 and the prime means that the term n =n_=...=n =0 has to

1
be excluded.

For p=1 the same result as published in Refs. [23,24,25],

is obtained:

&) = - (2vm)™ ' r(p/2) {(D) (2.9

where { (D) is the Riemann zeta-function.
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3. The sign of the Casimir energy density

One can see from Eq.(2.7) that it is not straightforward to
ascertain the sign of the Casimir energy density. To carry on this
discussion it 1is convenient to use the following integral

representation for the Gamma functions,
o

¥ -

W r(s) = [at et ¢871

0

to write
o L]
I'(s) A(1,...,1;25) = | at ts“[ z ! exp[-(ni ¥ oae. * n;)t] ]
l'll-.ank=-w
° L 4 ]
L4 2 k .
= de ¢°7 [ [ .,Z-n "t 4] - 1] (3.1)
1]
yielding
p-1 ©
=) A 9y a¥l q q-D D-g-2
€, (L) = 01 qzo (-1) Cp (Vi) at (vE) X
] o 2 (o] P-q

x[ [2;1 e'“t+1] -1] (3.2)

Now, performing the sum over q and expressing the
integrand in terms of the Elliptic theta function [34) oaco,e*),

it results from Eq. (3.2) that

=(p) LP-D -D/2 D-2 | n
CDP(L)’""';ETH dt(ﬁ) [[1" T]-l-

o
- [oa(o,e't) - J—:—— ]r] (3.3)

and this new formula allows one to disclose the relationship

/4

between D and p, and the sign of the Casimir energy density.
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It is convenient to study separately the case where p =

odd and p = even.
For odd values of p it is obvious that c""(L) < 0 for

'y > 1 and the

every p (independently of D), since oa(o,e'
integrand is always negative between the integration limits.

When p is even the above argument clearly does not apply.
Numerical calculations show that, in this case, the energy density
is positive for D s 6 {23). However, using Eq. (2.7) for p=2, it
can be shown that the energy density becomes negative for integer
values D & 7. 1Its behéviour for an arbitrary p=2j will be

discussed now and this situation will be shown to be no longer

valid for a certain large value of p. Defining

= 2 2}
g(t) = [ 1 - ] [ 1 - + 2 z e MY (3.4)
n=1
an analysis of this function shows that: it has only one real root
to(the same for every j > 0, lying between ¢.6m and n), it is

positive for 0 < t <« t, and negative for t, < t < =« and that

I at t% g(t) does exist whenever o = ':' .

A qualitative study of the integral of Eq. (3.3) is

detailed in the Appendix and the results are summarized here:
L.

a) 1im | at %=

k 2 ®

g(t) = - =

o
o«

o
b) For a> a = -2, jif [att’ g(t) =0

o
]
L+ 4

then at t % g(t) < o.

[+
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]
(p-1)r2
c) lim dat ¢ g(t) = - o .
p=2) <9 w
0

So, since the energy density, given by (3.3), for p even

0o
is proportional to I at t¢ g({t) we can conclude that in this case
o]

either E;’) is always negative (for p = 30 as suggested by
numerical calculations given in Table I), which comes from (c), or,

from (a) and (b), there exist a critical value of the spacetime

dimension D; for which

P+1sD<D, »E;”zo ‘
={p}
Dch - cn < 0,

The values of b, for p even, 2 s p s 30, with the respective energy

density values are given in Table I.
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4. Discussions

In spite of an impressive literature on the Casimir effect
[30}, the query whether its attractive or repulsive character
changes by going to higher dimensions had never been elucidated for
Dirichlet boundary conditions. In this paper the nature of the
Casimir force associated to a massless scalar field trapped inside
a rectangular box (with p finite and equal edges and D-p-1 infinite
edges) in a D dimensional spacetime is discussed for different
values of p. For Dirichlet b.c., a very peculiar dependence between
the nature of Casimir force and the value of p and the spacetime
dimension is shown to exist. When p is odd the force is always
attractive whatever the value of D. For p even and not very large,
there does exist a critical spacetime dimensionality U%) for
which: the force is repulsive if D <« D, and it is attractive if D -
= Dc. On the other hand, if p is large enough (= 30 as suggested by
Table I) one is sure that the Casimir force is always attractive.
In addition, since any configuration with even p < 30 has D_< 30
(see Table I), and from further numerical calculations for P > 30,
one can infer that the nature of the Casimir force does not depend
anymore on p and D for D & 30; it is always attractive. It is
important to stress that these results could only be obtained by
using Eq. (3.3). _

That several physical effects may be qualitatively
different by varying the spacetime dimensionality is not a new
feature [35). So, in a certain sense, the Casimir effect can be
considered as another example, but it is important to make the
exception that its dependence on D is strongly entangled with the

dependence on the geometric bounds (p) and on the kind of
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macroscopic boundary conditions imposed to the field. A further
unexpected dependence of the Casimir effect on the number of
spacetime dimensions comes from Ref. [4], where it is shown that
the zero point energy, associated to a massless scalar field
defined in an M'xs™* manifold, is well defined if D is odd, but,
when D is even this energy is logarithmically divergent. This is
perhaps the first example in the literature where "physics seems to
prefer D odd".

The results obtained in this paper permit us to
understand why the old semiclassical Casimir model for a spinless
electron [36] is unstable in a four-dimensional spacetime. In such
a scheme, despite the criticism to Casimir model [36)], we believe
it 1is useful to deepen our understanding concerning its
instability. In a few words, the main point of this model is the
suggestion that there =should exist a stress of quantum
electromagnetic origin (Poincaré stress) to assure the stability of
the Abraham-lorentz electron, modelled as an spherical conducting
shell. However, in 1968, the Casimir energy for this configuratﬁon
was found to be positive ([19), giving rise to a repulsive stress
(to be added to the Maxwell stress), contrary to what was expected
by Casimir (an alternative stable model for the electron was
proposed in Ref. (37]).

The bridge connecting our results for scalar fields with
the electromagnetic case is the useful formula relating the Casimir
energy associated to a massless vector field, in the presence of a
rectangular cavit§ with walls of infinite conductivity and with p
equal finite edges, and the Casimir energqy of a scalar field
satisfying Dirichlet b.c. [23):
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(..-1c;p1(L) - (D-2) E;p)(L) + p E:_’;” (L)

Use will also be made of the well known fact that if we deform a
spherical shell of radius a into a cubic shell of length L with L =
2a the magnitude of the Casimir energy almost does not change, as
shown in [1,38], allowing us to replace hyperspherical shells s"
by hypercubes with n+1 sides and use the above formula. In the four
dimensional spacetime it is easy to see from this equation that the
Casimir energy of an S? electron is positive [23]). Does this result
still hold for higher dimensional flat spacetimes? The answer is
no, and it can be shown that the zero-point electromagnetic energy
could assure electron’s stability in higher dimensional spacetimes
if two Casimir’s like models for the electron are assumed.

As a first example, the electron could be modelled by a
hyperspherical shell (Sn-z) with p=D-1, and pP-1¥p =30 for D even
and ptp =30 for D odd. In such a situation we can infer from our
results that ‘“"c:" is always negative ahd, therefore, the
electron could be stable. Note that, in this case, the condition of
stability will be fulfilled only for a particular electron rgdius.

Another possible model could be an infinite pipe with a

% in a D-dimensional M* x R°* manifold, where s?2

geonmetry s? x R
is contained in the observable three-dimensional space. In this
case p=3 and we have:
e P () - (p-2) £ (1) + 3 £°) (L)

Looking at this equation it becomes clear that, for D-1 < D (p=2)
(which is 7), if the positive contribution of the second term of
the right hand side is greater than that of the first term (always
negative as proved in this paper), the cCasimir model for the

electron is invalidated. This is indeed the case for D < 8,
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generalizing then the proof given in {19]) for D=4 (where both

models concide).

If, instead, D-1 = D_ (p=2) both EIJ

Y(L) and E::: (L) are
always negative, which can give rise to a stable semiclassical
model for the electron. Thus, the critical dimension for the
electromagnetic case (with p=3) is D=8.

In conclusion we have shown that the Poincaré stress could

have a quantum electromagnetic origin only if we lived in a higher
dimensional flat spacetime.

As a last remark, we would like to note that, although in
the classical level the electrostatic energy inside a cavity does
not depend on whether Dirichlet or Neumann b.c. are imposed to the
field, the quantum zero-point energy strongly depends on the choice
of the macroscoﬁic boundary conditions.

The results presented in this paper, together with other
open questions stressed in [30)}, compel us to share the opinion

that the Casimir effect is still, in essence, a poorly understood

phenomenon.
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Appendix:
Proof of a): For k > 0 and ¢ > 0
w0 to tooc
at t*°* g(t) = at %" g(t) + at t*°* g(t) +
[+) (4] t.o
[ -]
+ at t*** g(t) <
t_+€
to ]
< at ¢*** gty  + at t** g(t) <
0 t_+£
t w

<t |at t¥ get) + (e+e)* [ at % g(t) =

o t
L]

where as= ac t“ g(t) >0

o

-]
and b= - dt.!_t"‘ g(t) > 0
t.o# €

Thus
[ -] , t K
lim | at ¢** g(t) < 1lim (t+ ¢)* [ [‘F:T] a - b] -
0

k29w k 2 o
1]
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Since ¢ 1is arbitrary, it can be conveniently chosen to
make (tb+ c)" greater than the coefficient of the integral of Eg.
(3.3) and, therefore, the renormalized energy E‘zho ~ w in this
limit.

Proof of b): For k = « - a >0,
@ to o
at t% g(t) = | at ¥ get) + | at £** g(t) <

[+] 0 to
to N ’ . +
<t |at t¥ g(t) + ¢ at t% g(t) <
0 to
-]
< t; at t% g(t) = o

0

Proof of c):

We want to discuss the behaviour of the integral below with p;

t ! ®

(p-1)r72 (p-t)s2
I = [att g(t) + |at ¢ g(t)

] t
0

FOf 0 <t « th

a1 = (1= ) - [2nw va- [EF) <

<)< ()

L -
2
where h(t) = z e Pt 5o
n=1
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t
0
(p~1})r2 .
at t g(t) < 2 n”° ¢
[ +]
-]
{p-1)rs2
I < 2 U A U lg(t) |

t
1]

For t > tb' it iq_used the mean value theorem

lg(t) | =[2h(t) + 1, - I_'é_—]p- [1_1'_2_““]"

“rone [(2-FF) vo,0n0]

with 0 < @& < 1. So
Pt

p-1

(p-1)r2 (p-1)rs2 e
t lg(t)] > 2p t [ 1 - = ] h(t)
For t > 4n > to '
{(p-1)72 2 (p-1)/2
t la(t)y| > 2°% ph(t) ¢
Qhus
[+ L] L]
(p-1)72 (p-1)72 (p-1)r2
dt t lg(t)| > |at ¢ lg(t)} > — |at ¢ h(t)
t.o 4T 4T
-] . o
p (p-1)72 .
— |at ¢ h(t) > 2p (avm)®' | at h(t)
2
64N 64N
Thus
-]
I <2 nP’% £17% - 2p (4vm)®? | at h(t)

64N
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x
I < 2 (avm)® | 477 V& - 2n" ' 3p dat h(t)']
sam
Then, for p (even) large enough,

]
(p-1)r2
at t g(t) < 0

LA 0

{p)

d &
an CD

< 0 for any D z p-1 (this result does not depend on the

coefficient of Eq. (3.3)). In this ‘case there is no critical D

}

since all E;p (for D = p+l1, p+2, ...) are negative.
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x 0 1 2 3 4 D,

2 4.1x30°% | 4.8x107 | 8.1x10"* | 1.2x207* | ~1.9x20% | 7

4 6.2x10"° | 5.0x10™" | 6.2x10°% | 4.7x20° | -3.9x10% | 9

6 1.1x30°% | 6.8x10° | 6.4x107% | 7.3x10% | =7.0x207 | 11

8 2,2x10°% | 1.0x20° | 7.8x10"7 |[-6.4x10"® 12

10 4.4x10°° | 1.8x107° | 9.8x107°% [-2.7x107" 14

12 9.4x10°% | 3.2x107 | 1.0x107% |[~1.0x10"" 16

14 2.0x10"% | 6.0x107 [-1.6x10"°| 17

16 4.5x1077 | 1.1x10°° |-8.4x107%° ’ 19

18 1.0x10°% | 1.9x107° |~5.4x107"° 21

20 2.2x107° [ 2.4x107°|-3.1x20"%° 23

22 5.0x10"° | ~4.4x10™" | 24

24 1.1x1077 | -6.9x107] , ! ’ 26

26 2.3x107%°| -5.6x10" | ' 28

28 3.0x107"| -4.4x207"f | 30

30 |[-1.1x107M i - 31

TABLE I

TABLE I - Casimir energy densities for massless scalar fields
satisfying Dirichlet boundary conditions inside a

hyperparallelepipedal cavity with p even unit sides and u sides
much greater than one in a D-dimensional spacetime with D=p+u+l.

D, is the critical dimension for each value of P-
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