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ABSTRACT: A study of natural quasiorder on a convex set whose quotient is a suplat-
tice. When the convex set is a convex cone or an affine space, there are specializations. A
typical result is that an affine space is vectorial iff its quasiorder is chaotic.

KEY WORDS: Supplatice; convexity; vectoriality.

RESUMO: RETICULADOS ASSOCIADOS A CONJUNTOS CONVEXOS, CONES
CONVEXOS E ESPACOS AFINS. Um estudo de quasiordem natural num conjunto con-
vexo cujo quociente é um supreticulado. Quando o con junto convexo € wm cone Convexo
ou um espaco afim, ha espeaahzagoes Um resultado tipico € que um espago afim é vetorial
se e s se sua quasi ordem ¢ cadtica.

PALAVRAS-CHAVE: Supreticulado; convexidade; vetorialidade.
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1. INTRODUCTION

A convex set X has a quasiorder on it R that defines an equivalence relation e(R)
(see Definition 8). The quotient convex set X/e(R) is a suplattice associated with X
(see Proposition 9). A subset T of X is increasing whent € T, z € X, t < z imply
z € T, it following that T is a convex subset of X (see Definition 12). I V is a strongly
convexily independent nonvoid subset of a real vector space E and X is the convex subset
of E generated by V, namely a simplex of E, there is a bijection between X/e(R) and
the suplattice of all nonvoid finite subsets of V, each such subset of V determining an
open face of X (see Example 13). If X is a suplattice considered as a convex set (see
Definition 7), then R is an order, e(R) is equality, and the suplattice X is isomorphic with
X/e(R). Conversely, if X is a convex set, the convex set structure of X/e(R) derives from
its suplattice structure (see Definition 7), hence the suplattice structure of X/e(R) derives
from its convex set structure (see Proposition 14). If X is a convex set, ¢(R) is equality
iff the convex set structure of X derives from a necessarily unique suplattice structure
on X (see Corollary 15). Every suplattice is isomorphic to the suplattice associated with
some convex set (see Remark 16). When the convex set X is a convex cone or an affine
space, there are specializations (see Propositions 17 and 19). If X = A(E) is the affine
space of all nonvoid affine subspaces of a real vector space E, then X/e(R) is isomorphic
to the suplattice V(E) of all vector subspaces of E (see Example 20). An affine space X is
vectorial iff its quasiorder R is chaotic, that is z; < z3 for all 21, z2 € X (see Proposition
24).

2. NOTATION AND TERMINOLOGY

Notation 1. We denote by N the system of all strictly positive integers, R the system of
all real numbers, R* the system of all real numbers different from zero, R the system of
all strictly positive real numbers, and J the open interval of R of extremities 0, 1.

We refer to the Bibliography at the end for convexity. We review here just a bare
minimum.

Definition 2. A conver set X is a set in which we are given b convezr combination map
that toeveryn € N*, A;,--- JAp €T, M+ -+ A =1, 24, ,2, € X associates

Mzi+-+AnZa= Y Az €X
1<i<n
go that the following axioms hold:

Commutativity. En € N*, A, , A €T, M+ +Ap=1,24,*,2n € X and o isa
permutation of {1,--- ,n}, then

Z 4\,(,')3:,(5) = Z .\,'J:i.
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Associativity. Hm,n,m; € N* (=1,--- ,n), Aij, u; €I (i =1,-++ ;m;,§=1,..+,n),
219’5":3 Aij=1(i=1,--+,n), ElSjgan' =lLzi;€X(i=1,--,myj=1,--,n)

then

) u,-( > A.-,-z.-,-) = 3 (uidij)zis.

1<i<n \1€i<m; 1<i<m;
i<ign

Disiributivity. Hn € N*, A, - , A €T, M1 +-"+Ap, =1,z € X, then \jz4--+Az = 2.

Definition 3. A convez cone X is a set in which we are given two maps, an addition
(z1,22) € X X X v z; + 22 € X and a multiplication (A,z) € R} X X — Az € X,
so that the following axioms hold: z3 + x; = 71 + 23, (z1 + #2) + 23 = 71 + (23 + z3),
A(Il +£3) = /\2:1 + 4\3:2, (Al + /\2)3 = A;x + /\23, o\](/\gl‘) = (4\14\2)3, 1z = z for all A, o\],
A2 € R}, 71, 23, 3, £ € X. A convex cone is a convex set.

Definition 4. An affine space X is a set in which we are given an affine combination map
that toeveryn € N* A;,-«- Ao €R*, A1 +---+ A =1, 21,--+ , 2, € X associates

AMZ1+ -+ ApzZp = z N, e X
1<i<n

so that the following axioms hold: Commutatiuity, Associglivily, Distributivity for affine
spaces have the same formulation as in Definition 2 of convex sets provxded we replace J
by R*. An affine space is a convex set.

Definition 5. A guasiorder on a set X is a binary relation on it that is reflexive and
transitive. An order on X i8 a quasiorder on it that is antisymmetric. A quasiorder on X
defines an equivalence relation on it. A guasisuplattice is a quasiordered set X in which
any two elements z;, z; € X have a quasisupremum. A suplatiice is an ordered set X in
which any two elements z;, z; € X have a supremum z; Vzp € X. 7

Definition 6. Let R C X x Y be a binary relation between two sets X, Y. If X, Y are
convex sets, we say that R is compatible with the convex set structures of X, Y when R
is & convex subset of X x Y. Likewise by replacing convex set by convex cone and affine

space.

Definition 7. Let X be a suplattice. X becomes a convex set if we define Ajzy + -+ +
AnZa =Z1V---Vzoforalln e N*, Ay, - J Ap €T, i+ +Ap =1, 21, ,z4 € X. Also
X becomes a convex cone if we define z; + z; = z; V 23, Az = z for all A € R}, z;, z9,
z € X. Moreover X becomes an affine space if we define \jz; 4+---+ ApZp =21V ---Vz,
foralin € N*, \y,-- , A €R, M) +--+A, = 1,2y, ,2, € X. A convex set X derives
from a suplattice in this way iff convex combinations are constant, that is A;z;+- - -+ A, 2, i5
independent of A;,-+- ,Aqforalln € N*, Ay, , Ao € X, \j+--+An=1,21, - ,2, € X.
A convex cone X derives from a suplattice in this way iff multiplications are constant, that
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is Az = z for all A € R}, z € X. An affine space X derives from a suplattice in this way
iff affine combinations are constant, that is A\;z; 4 -+ + A, 18 independent of A;, -+ , A,
foralln € N*, A\j,--- , A s €ER* , M1+ +An=1,21, -+ 20 € X.

3. CONVEX SETS

Definition 8. Let X be a convex set. If z;, z; € X, define z; € z; when we may
write z; 8s & convex combination in X in which z; does appear, that is 23 = 37, cicp Aiti
wheren E N*, A\, -y, A €EX, A+ -+ da =1, 43, ,t, € X and ¢; = z, for some
i Equivalently, when we may write z; = Az; + (1 — A)t where A € J, t € X. This
binary relation R on X is a quasiorder. Reflexivity z; < z; for z; € X follows from
z1 = Az1 + (1 — A)z; where A € J. Transitivity is seen as follows. Let z,, z2, z3 € X,
2y € 23, 23 < z3. Then z; = Mz + (1 — Ay, 23 = Azza + (1 — A2)ta where A,
Ag e J, tl, tg € X. Hence Iz = /\gA]xl + Ag(l -_ f\l)fl + (1 - l\z)tg and I S T3, This
quasiorder R defines an equivalence relation e(R) on X by z; ~ z; when z;, z2 € X,
z; € z3, 72 < z3. The quotient set X/e(R) is ordered. The quasiorder R; hence the
equivalence relation e(R), are compatible with the convex set structure of X (see Definition
6). Indeed, it is enough to check that (1 — a)z; + au € (1 — a)z; + au for all @ € J,
z1, 22, u € X, z; < z3. As a matter of fact, we have 22 = Azy; + (1 — A}t with A € J,
t € X. Then (1 — a)zz + au = A[(1 —a)z; + au] 4+ (1 — a)(1 — A}t + (1 — A)au, hence
(1-a)z; +au £ (1 —a)zz + au as wanted. There is one and only one convex set structure
on X/e(R) such that the quotient map 7 : X — X/e(R) is a convex set map. Let next
z1, 22, ¢ € X. If z has an expression as a convex combination in X in which both z,,
z2 do appear, that is 2 = EK‘(”/\ it; wheren € N*, A\j,--- J A €EJ, M1+ +Ap =1,
t1,» ,tn € X and t; = z;, t- = z, for some i, j, then z) < T, T3 57 Conversely, 1f
] S 2,29 < z,thenz = /\131-]-(1 /\])tl, r= 4\23+(1 a\g)tg where Aj, A2 € J, 81, 8 € X.
Fora € J, we have z=(l—-a)z+az =(1-a)\z;+adze+(1—a)(1—A)¢, +a(1-—)t2)t2,
hence z has an expression as a convex combination in X in which beth z;, z; do appear.
This extends easily to z;,::+ ;2,2 € X and z; € 2,--+ ,2,4 < z for m € N*.

Proposition 9. A convex set X is a quasisuplattice with respect to the quasiorder R.
Hence X/e(R) is a suplattice (called the suplattice associated with X).

Proof. The convex set X is filtered to the right as a quasiordered set. In fact, let z,,
€X. HA€e ), setz=(1-A)zy+Az2 € X. Thenz) <z, :r:2<:f:provmgthcassertlon
(Hence the quasiorder of X cannot be equality, unless X is empty or reduced to one point.)
Let next 25, 2 € X, A, p€ J,u=(1 -z, + Az; € X, v = (1 — )z, + pz2 € X.
We claim that u ~ v, that is u < v, v € u. Let us prove « € v. We may find v € J so
tha.ta—(l—p)—v(l—,\)>0,ﬂ=p—w\>0. Indeed, we are requiring 0 < v < 1,
v < l—-f\'-, v < & which is obviously possible. Then a + 8 =1 - v and a, 8 € J. Therefore
v+a+8=1and vu+az; + fz2 = v, hence u € v. Likewise v < u by symmetry. Let
finally 2y, 29 € X, A € J, u = (1 — A)z; + Az2 € X. We have z; S u, 73 < u. Assume
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veE X, z; <v, 22 € v. As we saw (Definition 8), we may write v = a3z + azz2 + aszs
where a;, az, a3 € J, z3 € X. Hence

az) + azzy a)1T) + Ty
v = (a3 + @) ——— + a3z3, —_— S
o) + ag ay +az

Since u = (1 — A)z; + Azz ~ E%:ﬁ:ﬂ < v, we get ¥ < v. This proves that each
u = (1-A)z; + Azz for A € J is a quasisupremum of z;, 23 € X in X. It extends easily
to prove that each u = A\jzy + -+ A,z € X is a quasisupremum of z;,--- ,z,, € X in

XformeN*, X, ,dm €, M1+ +2n=11

Remark 10. Let X be a convex set. (1) If z,, 3, 13, {3 € X, {3 is 8 quasisupremum
of z;, z2imn X, A € J,t = (1 — A)t; + Aty € X, then t is a quasisupremum of z;, z;
in X iff {; <€ #;. Indeed, assume ¢ is a quasisupremum of z;, z;3 in X. Then ¢ ~ {3,
t; < timply #; < t;. Conversely, let ¢ < {;. We have t; < ¢. Also t; < {3 implies
t=(1-A)t1+ Atz < (1= A)ta+ Ay =t;. Thust ~ ¢, and ¢ is a quasisupremum of z;, =3
inX. (2 Let 2;, 2z, € X, A€ J,u=(1-A)z; + Azg € X. Then u is a quasisupremum
ofz;,z2in X. fve X,v<u, p€d, then (1 - plu+ pv € X is a quasisupremum of z,,
z2 in X by (1), not necessarily of the form (1 ~ A)zy + Azz, A € J.

Definition 11. Let X be a convex set. Denote by z, V z; the nonvoid set of all suprema
of z1, 2 € X in X for R. Then z, V z2 is an equivalence class in X for e(R) containing
all (1~ X)z; + )z € X where A € J. If 24, 22, u € X, then u € z; V 73 iff we have
u ~ (1 — A)z; + Az, for some, equivalently for all, A € J. Hence X /c(R) is a suplattice
whose order is compatible with its convex set structure (see Definition 6). If z,, z2 € X,
we have z; V 29 = w(z;) V n(z2), that may be written x(xy V 232} = x(z1) V x(z2) since
2y Vzy C X, m(zy V 23) = 23 V z3. This extends easily to the set ; V--- V 24, of all
suprema of £,, - ,Z,, € X in X for R and m € N*.

Definition 12. An increasing subset T in a convex set X is a subseét such that,if ¢t € T,
z€X,t<z,thenz € T; equivalently, if tc T,z € X, A€ J,then M+ (1 - M)z € T.
1t follows that T is a convex subset of X. Clearly @, X are increasing subsets of X. The
intersection and the union of a family of increasing subsets of X are also increasing. Every
subset T' of X generates an increasing subset i(T) of X, the smallest increasing subset of
X containing T, namely the intersection of all increasing subsets of X containing 7. We
have i(t) = {r € X;t <z} fort € X, and {(T) = J,eri(t) for T C X.

Example 13. Let V be a nonvoid subset of a real vector space E. Call X the convex
subset of E generated by V. Assume that V is strongly convexily independent in E,
that is the expression of every element of X as a convex combination of elements of V is
unique. X is called a simplex in E of vertices in V. Every 2 € X determines the nonvoid
finite subset v(z) of V of sll vertices that occur in the unique expression of z as a convex
combination of elements of V. We have z; < 2, for 2), 22 € X iff v(21) C v(22). Each
equivalence class for e(R) is the set of all z € X that determine the same finite subset
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of V by the map z € X — v(z) C V. Hence we get a suplattice isomorphism between
X/e(R) and the suplattice of all nonvoid finite subsets of V. Each nonvoid finite subset U
of V determines an open face F(U) of X, namely the subset of X of all z = 3 .y Mu)y,
where A : U = J, 3" cy Mu) = 1. The map U — F(U) is bijective. If V is finite of
n + 1 elements (n = 0,1,---), X is called an n-simplex; then R has 2°+1 — 1 equivalence
classes (the number of nonvoid subsets of the set V of n + 1 elements). This example may
be extended to a polyhedron X in a real vector space F, namely the convex subset of E
generated by a nonvoid subset V of E assumed to be convexily independent in E, that is
every element of V is not a convex combination of elements of V different from the given
element.

Proposition 14. (1) Let X be a suplattice considered as a convex set (see Definition
7). Then R is an order, e{R) is equality, and the suplattice structure of X is isomorphic
to that of X/e(R) associated with its convex set structure by Proposition 9. (2) Let X
be a convex set. The convex set structure of X/e(R) derives from its suplattice structure
(see Definition 7), hence the suplattice structure of X/e(R) derives from its convex set
structure (by Proposition 9).

Proof. (1) In principle, we have to distinguish between the order on X as a suplattice and
the quasiorder on X derived from its convex set structure by Definition 8. If z;, z; € X,
write z; < 22 (SL) or z; € x5 (CS) depending on whether we mean it in the suplattice or
in the convex set senses. We have z; < 2 (CS)iff 29 = Az; + (1 —A)t where A€ J, t € X,
that is z; =, V¢, or 2; € z2 (SL). Hence we may write z; < z; without specifying (SL)
or (CS). This proves that R is the order derived from the given suplattice structure and
e( R) is equality. Moreover, the suplattice structrure of X is isomorphic to that of X/e(R)
associated with its convex set structure by Proposition 9, because z; < z3 (SL) iff we have
z; £ 22 (CS). (2) Let Y1, Y2 € X/e(R). We have (1 — A1 + AYa =Y vYafor A€ J.
Indeed, if 1 €Yy, yz € Y3, set y = (1 — ANa + Ay € 41 V 42, hence x(y) = Y3 VY;. Then
7{y) = (1 = X)a(y) + An(y:) and ¥ VY; = (1 — A)Y; + AY; as claimed. This proves that
the convex set structure of X/e(R) derives from its suplattice structure (see Definition
7). Then (1) implies that the suplattice structure of X/e(R) derivef from its convex set
structure by Proposition 9. [

Corollary 15. Let X be a convex set. Then e(R) is equality iff the convex set structure
of X derives from a necessarily unique suplattice structure on X (see Definition 7).

Proof. Uniqueness is clear. Sufficiency is clear by Proposition 14, (1). Let us see necessity.
If ¢(R) is equality, use Proposition 14, (2) and the fact that then 7 : X — X/e(R) is a
convex set isomorphism. [J

Remark 16. Every suplattice X is isomorphic to the suplattice associated with some
convex set, since it suffices to consider X as a convex set (see Definition 7) and use
Proposition 14, (1).
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4. CONVEX CONES

Proposition 17. Let X be a convex cone. (1) If z;, 23 € X, then 2y < 22iff 23 = Az1 +1,
where A € R}, t € X. (2) If A, p € R}, z € X, then Az ~ pz. (3) H 7, 23 € X, then
2y + 23 € X is a quasisupremum of z,, 73 in X. More generally, if also A;, A3 € R, then
A121+ X222 € X is a quasisupremum of 2,1, 22 in X. This extends easily to 23, ,Zm € X
for m € N*. (4) The quasiorder R of X, hence its equivalence relation e{ R), are compatible
with the convex cone structure of X. (5) An increasing subset of X is a convex subcone

of X.

Proof. (1) Assume ¢, 22 € X, 21 < 22. Thuszp = Az; + (1 —A)t where A€ J,t €T
(see Definition 8). This proves necessity. Let us see sufficiency. Assume z3 = Azy + ¢
where A € R}, t € X. We may assume X € J, for it suffices to choose p € J, u < A,
and write 2 = pz; + (A — p)z; +t. Thus, if z9 = Az; + ¢t where A € J, t € X, we
have z; = Azy + (1 — A)u with u € X, hence z; € z3. (2) The assertion is clear if
A=y Assume A < p. Choose p€ R, p > p, v = £28 € J. Then pt = vA +(1 - v)p,
hence pux = {Az) + (1 — v)(pz) and Az € pz. Next choose p € R, p < A, v = :—:5 €
J. Then A = v + (1 — v)p, hence Az = v{uz) 4+ (1 ~ v)(pzx) and pz < Az. (3) Let
z1, 22 € X. Obviously z;, 22 < 23 +2z2 by (1). Hu € X, z; € u, 22 € u, then
u = Aiz1 + 15, ¥ = Ayzp + 12 where Aj, Ay € R}, 44, t3 € X. Choosing 4 € J, we have
4= (1—plutpu = (1—p)Aiz) +praza+(1—u)t +uts. Fixv € R, 0 < v < (1—p)Ay, prg.
Then u = v(zy +22) +[(1 — p)A1 — V] 21+ (pAg = v)z2 + (1 — p)ta + pt2. Thus 2y +2; < u.
This proves that z; + z2 is a quasisupremum of z,, z3 in X. More generally, let also A4,
A2 € R3. Firstly 1, z2 € A123 + 2223 by (1), hence z; + 23 £ A7) + Ay 73 because z; + 2,
is a quasisupremum of z;, zz in X. Secondly, choose A € R, 0 < A < 1/A;, 1/A;. Then
21+ 22 = A Ar121 + A223) + (1 = AXy)zg + (1 — Adg)z3, therefore A2y + Aoz2 < 21 + 22 by
(1). We conclude that A;z; + A229 is & quasisupremum of z,, z; in X. (4) Firstly, let ¢,
ty, 1,22 € X, t1 £ 71, 2 < z2. Then 2; = Aty +uy, 22 = Aztz + uz where Ay, A3 € R,
uy, u3 € X. Hence z; + 22 = A1t + Azt + u; + uz. Hence Aty + Mtz < 21 + 23 by (1).
Since t) +t3 ~ A1ty + Agiz by (3), we get ¢ + ¢, < z) + 3. Secondly, let ¢,z € X, ¢t < 2,
A € RS. Then z = put + u where 4 € R%, u € X, hence Az = pu(At) + Au and At < Az by
(1). (56) Let T be en increasing subset of X. Firstly, ft € T,z € X, thent <t 4+ x by
(1), hence t + x € T. In particular,if t € T, 2 € T, then t 4 z € T. Secondly, if A € R],
teT,thent~Aby(2),hencet<Aand MeT.

5. AFFINE SPACES

Lemma 18. If X is an affine space, A € R}, 21, 22 € X, then z2+Az;—-Az) = 22421 —23.
(we recall the simplified notation z3 + Az; — Az; = 127 + Az; + (—A)z), in particular
I3+ ~T1 =l + 1 +(—1)$1.) .
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Proof. We have 224+ Az; —=Azy = 22+ (A1 + 2y = 23)—Azy = 22+ 21— (21 + Az = Azy) =
Ta+23-23.

Proposition 19. Let X be an affine space. (1) If 4, 22 € X, then z; £ z; iff we may
write z2 as an affine combination in X in which z; does appear, that is z3 = 3, ¢, ¢, Aii
where n € N*, Aj,- - , A ER*, Ay + -+ An =1, 8,4+ ,8n € X and ¢; = 2, for some i.
(2) If 2;, z; € X, then z; < 2, iff we may write 2, = Az) + (1 — A}t where A € R, A # 0,1,
te X. (3)If$1, 22 € X, then z;, < 23 iff 23 = 22 + 21 — ;. (4) Ifz,,z2€ X,A€R,
A#0,1, then (1 —A)z; + Az2 € X is a quasisupremum of 23, z2 in X. This extends easily
to zy,--+ ym € X for m € N*. (5) The quasiorder R of X, hence its equivalence relation
e(R), are compatible with the affine space structure of X. (6) An increasing subset of X
is an affine subspace of X.

Proof. (1) Assume z;, z3 € X. Necessity in (1) obviously follows from necessity in (2). Let
us prove sufficiency in (1). Assume that 23 = ¥, ;¢ Aili wheren € N*, Ay,-+- ,As € R*,
M+ +Aa=118, 4o € Xandsayt) = z;. f p€ J, p # A is chosen, write
29 = Mixy + E,S‘S“ Ait; = pxy + (M — )z + 229-5“ Aiti = pz1 + (1 — p)t with a
suitable ¢ € X. Thus z; < 3. (2) Assume z;, z3 € X. Sufficiency in (2) obviously follows
from sufficiency in (1). Necessity in (2) is clear because z; < z; means that we may write
23 = Az + (1 — A)t where A € J, t € X by Definition 8. (3) Assume 24, z; € X. If
za=z2+m—T,fixd€Jandwritezg = Az + (1~ A)z1 + 22 — 21 = (1 — A)zy + At
with a suitable t € X. Thus z; < z3, by Definition 8 Conversely, let z; € z3. Then
z3 = A2y +(1 — A)t where A € J, t € X. Hence 23 + 2y — 21 = 22 + Agy — Az; (by Lemma
18) = Az, +(1—/\)t+/\x1 = Az; = (Azy + Az "1\31)+(1—/\)t =M1 +(1-At=1z,
as wanted. (4) fz), z2 € X, A\, p € R, A, p# 0,1, set u=(1-A)z; + Azz € X,
v = (1~ pu)zy + pzz € X. We claim that u ~ v, that is ¥ € v,”v £ u. To check
u<vletveER definea=(1-pu)~v(l~A), #=p~-vA € R and choose v so0
that a, 8 # 0. Then v+ a + 8 =1 and vu + az; + Pz = v because u # 0,1. Thus
u £ v. Similarly v € u because A # 0,1. We know (proof of Pm})osition 9) that v is
a quasisupremum of 2y, 22 in X if g € J. Thus v is a quasisupremum of z,, z3 in X
for A € R, A # 0,1. (5) It is enough to check that (1 — A)zy + Au £ (1 — A)z2 + Au
for A € R*, z;, z3, u € X, z; < z,. As a matter of fact, z; = z2 + =3 — z; by (3),
u=t+u—u hence (1-A)ra+du=(1-Ar2+(1-2A)2; —(1-A)z; + Au+ du~Au =
[(1=A)zz + Au]+[(1 = A)xy + Au)=[(1 = A)zy + Au). Thus (1-A)z1 +Au < (1-A)za+Au
as wanted. (6) If T is an increasing subset of X, we have At + (1 -~ A)z € T if A € R,
A#0,1,t €T, 2 € X by (2). It follows that T is an affine subspace of X. [J

Example 20. Let X = A(E) be the affine space of all nonvoid affine subspaces of a real
vector space E. It T € X, let v(T) = T — T be the vector subspace of E associated with
T. Then Ty < T for T}, T; € A(E) iff v(T1) C v(T3). Hence X/e(R) is isomorphic to the
suplattice of all vector subspaces of E.

Lemma 21. If X is an affine space, the following conditions are equivalent: (1} X satisfies
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the cancellation rule for convex sets. (2) 23 = 22 +.£1 —zyforallzy,z2 € X. B) A eR,
A > 1, 2y, 22, 23 € X, then 23 = (1—A)z; +Az; isequivalent to z3 = (1-1/A)z; +(1/A)zs.

Proof. (1) =>(2). Fix8 € 1. Iz, x; € X, we have (1-8)z,+0(z2+2,—2;) = [(1-8)z; +
fzy~8z,}46z; = (1-8)zy+8x;, hence 23+2,—2) = z2 by the cancellation rule for convex
sets. (2) = (3). KA €R,A>1, 57, 73, 75 € X, assume 23 = (1~ A)z; + Azz. Then
(1-1/2)z1+(1/M)z3 = (1=-1/X)214+(1/A)[(1=A)zy1 +Azg) = (1-1/N)z1+{(1/A-1)z1 422 =
z; (by Lemma 18). Conversely, assume z; = (1-1/A)x;+4(1/A)z3. Then (1~ A)z;+Az; =
(1=Xzy +A[(1 —1/A)z; + (1/M)23) = (1 — A)z; + (A — 1)z1 4+ z3 = z3 (by Lemma 18).
(3) == (1). In particular, if A € R, A > 1, we see that 23 = (1 —1/A)z; +(1/A)z3 implies
that 3 = (1 — A)2; + Az, hence X satisfies the cancellation rule for convex sets. []

Remark 22. Keep (1), (2) as in Lemma 21. In the notation of (3), call (3a) the condition
that 23 = (1 — A)z1 + Az, implies 23 = (1 —1/A)z; +(1/A)z;, and (3b) the condition that
we have the inverse implication, so that (3) = (8a) N (3b). We may give direct proofs of
(2) = (1), (3a) <= (2), (3b) <= (2) es follows. (2) => (1). Let @ E J, o1, 21,
z3€X,(1~8)zy +0z3 =(1-0)zy +8z3. If z € X, we have

%K1-9ﬁ1+&d+(1—%)zl=(%~1)él+(1—%)z1+z=z

by (2) and Lemma 18. If we set z = z,, 3, we then get z; = z; as wanted. (3a) <
(2). In fact, (3a) means that z; = (1 ~ 1/A)z1 + (1/A)[(1 — Nz, + 4\::2] =(1-1/A)z +
(1/AX = 1)z; + z3 which is 22 = z; — 3 + 23 by Lemma 18, (3b) <= (2). In fact, (3b)
means that z3 = (1 — A)z; + A[(1 —1/A)z; + (1/A)23] = (1 = A)zy + (2 —1)z4 + z3 which
is z3 = 21 — 21 + 23 by Lemma 18.

Lemma 23. An affine space X is vectorial as an affine space iff it is vectorial as a convex
set. ’

Proof. Necessity is clear. To prove sufficiency, let X be vectorial as a convex set. We may
then assume X to be a convex subset of a real vector space E. We claim that, if A € R,
A > 1, 2y, 22, 23 € X, then 23 = (1 — A)z; + Az in the affine space X implies that
equality in the real vector space E. Indeed, we then have z3 = (1 — 1/A)z; +(1/X)zs in
the affine space X because (1) = (3) in Lemma 21, once X is vectorial as a convex set,
hence it satisfies the cancellation rule for convex sets. This is an equality in the convex
set X, therefore in the convex set E, hence in the real vector space E. It follows that
z3 = (A—1)z1 + Az; in the real vector space E, as claimed. This proves that the inclusion
map X — E is an affine space map if X has its given affine space structure and E its real
vector space structure (since we also know that this map is a convex set map, once X is a
convex subset of F). It follows that X is an affine subspace of E and that the given affine
space structure of X coincides with that induced on X by E. Hence X is vectonal with
its given affine space structure. [
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Proposition 24. An affine space X is vectorial iff its quasiorder is chaotic, that is z; < 22
for all T, T3 € X.

Proof. Necessity is clear. Let us prove sufficiency. Assume the quasiorder is chaotic, hence
Ty = Tz + T3 — z; for all 7;, z; € X (see Proposition 19, (3)). Then X satisfies the
cancellation rule for convex sets because (2) => (1) in Lemma 21, hence X is vectorial as
a convex set, and finally X is vectorial as an affine space by Lemma 23. [
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