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Abstract

By the use of the generalized Grassmann algebra provided by
Quantum Groups we introduce a new class of fields in two dimensions
which have deformed commutation relations. We give the action in-
volving this new class of fields and a bosonic scalar field and show
that this action has a symmetry that resembles supersymmetry. We
also construct the path-integral formalism for this new class of fields
and compute the propagator for them in the context of the g-heterotic
model.

Key-words: Quantum field theory; Quantum Group; Quasi-
triangular Hopf Algebra; Supersymmetry.



CBPF-NF-018/92

1 Introduction

1t is well known that, in four or more dimensions, the spin-statistics theo-
rem relates bosons (fermions) to integer (half-integers) values of the spin.
However, in two or three dimensions there are possibilities for spin and
statistics which do not occur in four or more dimensions. The two dimen-
sional rotation group SO(2) is abelian and so its irreducible representations
are characterized by a continuous parameter giving rise to particles with
non integral and non half-integral spin. Moreover, the permutation group
is not the most general group for continuous interchange of positions of
particles. Such group is, in fact, the braid group and particles quantized in
such way have braid group statistics. Although the quantum theory asso-
ciated with these particles is not yet completely understood, it is believed
that planar physical systems could show some properties associated with
this feature. '

In this letter, we will explore this possibility in the two dimensional
case by constructing fields which obey different commutation relations from
those for fermions and for bosons and with different occupation number.
As we will see, they are, under several aspects, generalizations of the Grass-
mann variables provided by Quantum Groups [1,2,3).

One of the interesting features of Quantum Groups is the fact that these
‘theories can be related to physical problems where the coordinates are non—
commutative. On the non—commutative space of a Quantum Group it was
shown [4] to be possible to define consistently a non—commutative differ-
ential geometry and a simple example was developed [5) on the quantum
plane {6].

Recently it was shown [7] that one could understand these non—commu-
tative coordinates as the classical limit of the creation and annihilation
operators of the g-deformed Heisenberg Algebra [8]

aa' — gala = ¢V, (1)

where [N] = (g% — ¢"¥)/(g ~ ¢!) = a'q, and g & complex parameter. K
we take ¢ = exp(2mi/k), where k is an integer, we can show that [7)

ot = (a") =0, (2)

which shows to have a discrete spectrum. If, after a suitable change of
variables we consider the classical limit of these operators, we have the
classical variables (6, §) obeying the relations [7]

68 = 469 (3)

and _
(6) = (6)* =0. 4)
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Notice that for k = 2, ¢ = —1, these classical variables are nothing more
than the anticommutation relations for fermjonic variables. For k > 2, but
finite, they can be seen as generalizing the idea of Grassmann variable. We
can construct & differential calculus with such variables, and it is possible
to show that there is an underlying Yang-Baxter structure and a covariance
under the quantum group GLa ¢-3) [7].

It is interesting to notice that, for k = 2, ¢ = —1, eq.(1) becomes the
usual anticommutator, which is consistent with eqs.(3) and (4). Tuaking

'k — o0, eq.(1) becomes the usual commutator. The meaning of this limit
in eqs.(3) and (4) is that, if we Taylor expand a function of these variables,
it will become a series (obviously, if #* = 0, k finite, a Taylor expansion
will be a polynomaial of degree (k — 1)).

In the following, we address the intermediate cases of these generalized
_classical variables, specially the case k = 3. In the next section we discuss ¢-
commutators for the fields, we construct an action with them and show that
such action, plus the action of a scalar field, has symmetries that resemble
supersymmetry. In section 3 we discuss the path integral for these fields. In
section 4 we write the Functional Generator and compute the propagator.
We let some final comments and perpectives for the last section.

2 g-heterotic supersymmetric 2—D Field The-
ory

In this section we discuss the fields that appear in the case ¥ = 3 and
some of their properties, in the context of two dimensional Field Theory.
A similar analysis was performed in the classical mechanical context {9].

Let us start by discussing what type of fields can appear in this case.
Let us recall that with Grassmann variables, we can have two different
types of objects: those that behave like @ (fermions) and those that behave
like 8° (bosons).

If now we consider the case ¥ = 3, we have three different types of
fields: bosons (that behave like 8°), and two different fields, that we call
quermions, that behave under commutation relations like # (a sector-one
quermion) or like #* (a sector-4wo quermion). The commutation relations
depend on the factor ¢ = exp{2ni/k) (from now on we call it quommutator).
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We define the quommutator between two fields A" and B as
[4©), BWY], = g~/ 40 Bla) __ gtre/2) Bo) 0r) ®)

where the supperscript indicates the sector of the fields (we take a boson
as a sector zero field). A similar quommutator appeared related to the g-
deformed Virasoro Algebra [10], but in that case the powers of ¢ was related
to the modes of the Energy-Momentum tensor, while here it is related to
- the sectors.

This is the simplest relation which garantees that any boson obeys the
usual commutation relation with any other field, because in this case the
g-factor disapears. It gives the correct limit for Grassmann variables in the
case k = 2 and, in the limit £ — oo we recover the usual commutator.

As we are extending the case of bosons and fermions, the product
"A() B} belongs to the sector (r + s)mod3. With this choice, we can
see that

[ A('), B{‘)C(‘)], — q(~ﬂ!2)[ A(f), B(‘)]QC(‘) + q(uﬁ) B('}[ A('),C(')],, (5)

which is a ¢-extension of the commutator formula.
We can take the two dimensional action for the quermions as

Sy = [ daC* o, 9Py, W

where 2% and 2~ are the light cone coordinates in Minkowski space and the
first order derivative is chosen such that the classical equations of motions
for the ) are similar to the fermionic case. The cocycle-type factor C¢*Y
is required because we want that S, commutes (that is, behave like a sector-
zero object) with respect to any field, including %) and ¢®. The point
here is that, although 8,¥*() belongs to the sector-zero, it does not
commute with ¥® or ¥(1), since we choose equal fields at equal points to
commute. We stress here that ¥° = 0, but ¢’ # 0. This cocycle-type
factor C*) actually behaves like a sector—counter, that is,

COAD) = A, ®)

Notice that S, does not fix the dimensions of (). They will be deter-
mined in the following, by imposing a symmetry similar to supersymmetry.



o ) 'a\—-_._.-. T B _....—-.-—-._...__h i ” ° . o __ - - - ..,___}:—.—" -
i CBPF-NF-018/82

To do this, we write an action including the quermionic fields and a scalar
field ' '

S= [ 20,404 - 4O 0,9 y). ©)

whith (") real. ) _

This action seems to be an extension of the heterotic two dimensional
field theory, and we ask if it is possible to write a transformation among
the fields that keeps the action invariant. As in supersymmetry, the in-
finitesimal parameter will not be a boson, and in this case we can take
it to belong to the sector-one or to the sector-two. We also suppose that
one could define a g-superspace with coordinates (z*,z~,6) and that there
exist translations in this g-superspace. For a sector-one parameter, (1), the
translations are

8 - ¢=0+éY

2= o 7 =z 4 ¢8%N, (10)
with the choice [¢(!), 8}, = 0. This fixes the mass dimensions for ¢ and €(!)
6] = M) = -%- (11)

As eV} is a sector-one object, and we are interested in heterotic q-super-
symmetry, it is natural to choose §p0) ~ V8 14, §¢ ~ VB_"y? and
3 ~ MP_"y(), that is, a cyclical combination of the coordinates.

Factors C(*) must be introduced to ensure that each variation behaves
like the field itself under quommutation relations with the other fields, and
powers of ¢ are chosen such that the variations are real.

In order to determine (I,m,n), we compute 45 and impose it to be at
least a total derivative. This implies that n must be even, and the condition
that [p()] is greater than zero implies that m = n = 0, ! = 1, fixing the
transformations as

§¢ = qCWel)yp®
sy = g0y g (12)
§p? = +qeWy), _

This gives us the dimensions of ¥,

2
==
[w‘]_3
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Wol=3 (13

and the variation of S is given by |
os=2 Prd, (V) (14)

a total derivative. Thus the action eq.(9) in invariant under the transfor-
mation given by eq.(12).

We can also write a transformation involving €(*! in the g-superspace,
given by ' '

? — =649
B = =2 4 ¢be® (15)
‘with the choice [8, )], = 0, which gives

) = 2
(] = -3 (16)

The cyclical transformations among ¢, %) can be constructed in the
same way as before. Factors ¢ and C{? are analogously dertermined and
powers in the derivatives are already known, since we know all dimensions.
We then get

8¢ = —q*CWAyp)
s = 42D yp® Q17
Sp® = qc(s)’ e?a_g.

In this case the variation of S is given by
85 = j &z (g?C8, (PypMa_g) + gCW Po_ypDa, py))).  (18)

However, the last term is not a total derivative, so the action eq.(9) is not
invariant under the transformation given by eq.(18).
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3 ' Path Integral for Quermions

We now want to construct a path integration over the quermionic fields
introduced in the last section. This will be used later when we define the
Functional Generator and compute the quermionic propagator.

To state the problem, we want to integrate over the quermionic variables
¥() that obey the relations

M = PPy (19)

and

PR = 0. (20)

Imposing linearity and translation invariance, it is easy to see that the
/integration over one variable is of the form [7]

/ ) (i) = 6, 20, (21)

where « is a constant to be determined. If we want to integrate over both
variables, !} and ¢?, the invariant measure is given by

[d¥] = C¥ dy® dy®@, (22)
Let us impose the g-gaussian integral
I= [ldv]exp[C @ y0) (23)
as equal to one. Expanding the exponential, only the quadratic term will
survive, and this gives
a=yf2. (24)
From this, it is clear that
/ [d)exp [CW ) g, p )] = o2, | (25)
Our next step is to construct a functional integral that involves two
quermions (that is, ¥,V , v, @, ¥, and lbgw). Writing the measure as

[d¢], the integral is of the form

L = [ld¢]exp (X) (26)
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i,
- Sl
= e

with
X = X1+ X, = $; P4,V + ¢, 4,4, (27)

where A,, a = 1,2, are chosen such that each X, belong to the sector-zero,
and in general they will be a product of a c-number a, times some cocycles.

We must, of course, give the quommutator relations between the differ-
ent fields ;) and v,"). We choose them to be

[,;,..(l), '.b-;(z)], =0 (n_o summation over 1)

[ =0  ij=1,2 (28)

With this choice, it is easy to determine the cocycles needed to make
each X, belongs to the zero-sector. The A, are

4 = a:C C(hM)C(9, ™)’

Az = a;C C (1 M)C (3 ) (29)
where C(A)A = gAC(A), i.e., the cocycle type factor C(A) g-counts the
field A.

We need still to determine the invariant measure. To do it, we simply
multiply all the cocycles appearing in 4, and A,, obtaining

[dy] = CUC (") C (122 C (1 V) C (302 @) dipy Vedipy Dy, D dip, @),

(30)
In fact, with this choice the measure can be broken in two pieces
[d9] = [dy][ds] (81)
where
[di] = OO C(8;M)C () dy VD) (32)

where i # j, and each [dy;] is invariant
With this measure, we have

L= _[ [di) exp (X + X3) = a1% a3 (33)

Notice that the eq.(27) can be writen in a matricial form, with A being

a diagonal matrix with diagonal coefficients a,, in this case we can rewrite
eq.(33) as

I = (det A). | (34)



The generalization for N > 2 follows in the same way. We take the
quommutators of the fields

[%:Y, ,p,-(?)] =0 i=1,2...,N (ho summation over i)

8™ =0 ij=12..,Ni<jhm=12  (35)

where X now is given by

X= EX ZN“M¢W (36)
a=1 . a=l
with N .
Aa=a,CW T C(vs™)C(ws™). (37)
A=1.8¢
-The measure is N
[dib] = E[d¢u]! (38)
with N
[dga] =C JI Cs™)C(¥s®)dvadia®, (39)
=1,8¢a
giving for In: -
Iy= lj\-r[(f.:t,,)2 = (det A)*. (40)
a=1

Notice that, as we are considering generalizations of the Grassmann
variables, this could be an expected result. In fact, if we consider gener-
alized Grassmann variables, * = 0, k integer, linearity and translation
invariance impose that

JETET (41)
and the ¢-gaussian integral behaves as
[ldv)exp ($4%) ~ (det )Y (42)

with the correct limit for k& = 2.

Analogously to the case of fermions we can generalize eq.(40) to an
infinite number of degres of freedom obtaining in this way the path integral
for the quermionic field action.

o

-4\-—,___

CBPF—N?-018/92 :



CBPF-NF-018/92

4 The Functlonal Generator and the quer-
mionic propagator
Let us now write the Functional Generator and compute the propagator

for the ¥}, To do this, we need to introduce sources J* and J®, coupled
to the quermions. We choose their quommutators to be

[, @), =0
(79, W), =0 (43)
hb"’, J(t')]q =0

witht=1,2.
The functional generator can be written as

210, 70 = = [ldv]expli [ Pa(gC 9P 40+

+ FFCWIC(IENR YA JO) 4 20O (JW))? JAy () (44)

where A is some invertible operator (4 = 18, if we consider the action
eq.(7)) and the powers of ¢ and the cocycles in the last two terms are fixed
by imposing the reality condition and that they belong to the sector-zero.
We now follow the usual trick to compute this integral. First, we write the
integrand of the argument of the exponential in eq.(44) as

Q™M) = C (¥P + heM AP + M) + X (45)

with
vl = g2CW (I 4 g
%o = CUFC(IM) JD A (46)
and
X = —g*C(JW?C(J@) gD A g (47)

As X commutes with all the fields and sources (and with the measure),
we can take it out of the integral, remaining only the ¢-gaussian integral



SR CBPF-NF-018/92

already discussed in the last section. Normalizing Z such that Z[JW) =
0,74 = 0] = 1 we get _ _
- N=(det A (48)

and Z becomes _
' Z[IW, 7O = exp (qﬁcum)’ca(?l) / d’zJ{”A“J(") (49)
The two-point function is defined as

<) = it/ O ) exp (f #=iqu™, v}

JOi=0
§?

(1) 7(2}
YA A

= CC( J(z))zc( Jih 5700 (50)

. Fi)l=0
with

FIW,J%) = exp (FCF o(a0pC(I®) [ PzIBATID)  (51)

Computing the derivatives, we get

< ¢ 2)pp(y) >= #CW ANz - y). (52)
For the free quermions of the action eq.(7), A = 18, and the propagator
is
_ _ qzc(')
O W (y") >= ——. 53
("W (7) G =3 (53)

We can interpret this expression as an extension of the fermionic propaga-
tor, since taking the limit k = 2 (or ¢ = —1), apart from the cocycle, we
get the well known result.

5 Concluding Remarks

Using the generalization of the Grassmann variables provided by Quantum
Groups [7] we introduce in this letter a class of fields in two dimensions
which behave differently from bosons and fermions. These fields have dif-
ferent commutation relations among themselves, indicating that they would
have to obey braid group statistics.
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We construct an action involving these quermionic fields and show that,
after including a scalar term, the total action has an amusing symmetry
relating the bosonic and the quermionic fields which resembles supersym-
metry. This action, in fact, can be interpreted as the generalization of the
heterotic two dimensional Field Theory. We- determine also the mass di-
mension of the quermionic fields, and as expected it is not half-integral as
it is in the fermionic case.

As we believe to be interesting to analyse the quantisation of quermionic
variables, we start to develop the path-integral formalism for these new
fields and we compute the quermionic propagator, within this approach, in
the context of the ¢g-heterotic model. The propagator is very simple and,
apart from the cocycle and a g-multiplicative term, is similar to that for
the bcBv system [11] even if the physics is different from that case which
can have only bosonic or fermionic statistics.

Finally we hope that the approach we have introduced could bring new
- ideas in understanding the role of Quantum Groups in string theories and
in planar physical systems.

One of the authors (J.L.M.V.)} wish to thank CNPq for financial support.
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