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Abstract: We show the equivalence between the Schwinger and axial
models, in the sense that all Green’s functions of one model can
be obtained from those of the other, and that both models have the
same effective Lagrangian density (and so they have equal
partition functions associated with them). In particular, we show
that the two models have the same chiral anomaly. Finally it is
demonstrated that the Schwinger model can keep gauge invariance
for an arbitrary mass, dispensing with an additional gaﬁge group

integration.
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I )Introduction:

Since the Schwinger model (SM) was introduced’ , many other
two-dimensional exactly solvable models have appeared, such as the
Thirring modela, describing fermions \with quartic
self-interaction; the axial model (AM)a, which describes a massive
pseudoscalar field interacting with massless fermions, the
chiral-Schwinger model‘, etc. The great appeal of these models in
1 + 1 dimensions, is that they provide the possibility to study
problems as confinement, asymptotic freedom, renormalizability,
etc., in models which can be exactly solved.

Some years ago Rothe and Stamatescu’ presented the axial
model, solving it in the operatorial formalism. Many other works
have appeared since thens'iz, discussing several aspects of the
model. In this paper we intend to show that, in fact, this model
is equivalent to the Schwinger model . We do this by obtaining the
rules to map the Green’s functions of the models. The material is
organized as follows: in section II we relate the Lagrangian
density of the SM with that of a pseudoscalar field with higher
derivative terms interacting with massless fermions, establishing
their connection and demonstrating the relation between the boson
self-energies of the SM and of the AM, which appears as an
observation in the original work of Rothe and Stamatescu®; in
section III, we obtain the anomaly of the SM from that calculated
for the AM, deriving the rules to pass from AM Green’s function to

that of the SM; then in section IV we show the equivalence of the
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effective Lagrangian densities of the models, by solving exactly
the SM; section V is devoted to see the equivalence via the method
of point-splitting; in section VI it is shown that the SM has a
bosonic effective action that is manifestly gauge invariant, with
an arbitrary mass for the gauge boson. This is done without
integrating in the gauge volume as it happens in Harada-Tsutsui’s
work!?® and this is interpreted. Finally, in section VII we present

our conclusions.

IT) The SM as a pseudoscalar model:
The Lagrangian density of the SM is given by

]

_ ook _ uv M 5 |
er'a )y - F P e + 3 A" +Feo+8y (1)

u

_ 7
£ = Y(iv ? "

where we have included the field sources, necessary to obtain

correlation functions in the functional formalism. Throughout the

work we use
M,y = 2%V, (2)
and in two dimensions and in Euclidean space is valid that

v. = i%, vt = iy, € = 41, (3)

Now we can use the vectorial identity, wvalid in 2D:
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— v '
eAu—g[aun+euv8x]. (4)

In this section we will choose = 0, as can always be done in the
Lorentz gaugel‘. In section IV we shall see that, in fact, this
corresponds to the use of identity (4) putting at the end the
gauge parameter a equal to zero (Landau gauge). Now, it is easy to

rewrite the Lagrangian density as

_ i, _ o3 2 2
£ = ¥r (i5, - gom | igr 8, x)¥ + (3°/2e7)xffx +

o+ (a/e)dn + (g/e) €, T8 x + Vo + By, (5)
A}
where we have uged eukuav = iwujgau , and
HVeTP = _ sHIVP  sHPsVT, (6)

The bosonic correlation functions are obtained by taking
functional derivatives with respect to the source J”(x). To each
derivative in this source we obtain a term of the type

(1/1)82/83,(x) = n“[nw DY Dx[(g/e)e”vap]x(x) exp[isx] =

= (g/e)e"Va (1/1)8Z/8K (%), (n

where
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Z(8,8,K] = N“Jnﬁ Dy Dy exp[igx], '(Ba)

and EK comes from:
LI %”(iau - igr g x)y¥ + (g°/2e®)xoox + YO + By + Kx. (8b)

On the other hand, the Lagrangian density of the AM is given by

£, = Vit (ie, - 1978, 01V + (1/2)(8,4)° - (m7/2)¢° + Yo + BY + K¢.
(9)

]
We can see that the only differences between (8b) and (9) are the

corresponding free bosonic Lagrangian densities.

Using the rule (7), we have for the photon propagator:
pH% (x-y} = (17i%) SZZIGJu(x)SJo_.(y)lJzo =
= (g/e)25“"e°"’avap(1112)szixaxtx)ax(y) |M (10a)
and so
DM (x-y) = (g/e)’"Ve7Po s oD (X-Y) . (10b)

In momentum space, the free propagator D:(k) for the boson ¥ in En

is given by
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D2 (k) = (e/g)*/K*. (11)

Substituting (11) in (10b) and using formula (6), we obtain the

free photon propagator, .
p° (x) = (/x5 |- g+ x Xk /kzl - (12)
uo Mo u'e ’

which corresponds to the expected result in the Landau gauge.

Now, we will use (10b) to find the relation between boson
self-energies of the SM and AM, as noticed by Rothe and
Stamatescua, although there it appears without demonstration. The

kY
complete propagators for these models are

Duo.(X'Y) = AAMM +‘ﬂ-’~o~\/\'\. + W‘F ses @

_ PVn0
/(1 1T Dpu

o

=D
uc

), (13a)
for the field Au in the Schwinger model, aﬁd

! D(x-y) = D°/(1 - m°), (13b)
for x in 2x , equation (8b). Using (10a), and remembering that

this relation is valid also for free propagators, and making

straightforward calculations, we obtain:
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0.0 _ 2_uy _op 0.0 :
m°p . = (g/e)’e Ve avapn“"n Do (14)

so that, in momentum space we have
mk) = (g/e)% Ve Pr k17, (15)

which, up to the multiplicative factor (g/e)z, is equal to that
which appears in the original work in the AM>. Besides we observe
that this relation is valid only when we are working in the Landau
gauge (a¢ = 0). It is interesting to note that now we can obtain
gimilar relations for other Green’s functions as, for example, the
four phoﬁbn scattering amplitude. Finally, we observe that the
above demonstration, made for the field x, can be easily repeated
for the field ¢ of the AM, because it does not depend on the

explicit form of the propagator D(x-y) used.

- II1I) The Anomalies:

We observe that the Lagrangian density (8b) differs from that
of the AM (9) only through the form of the free boson propagator,
and that in two dimensions the anomaly appears in the polarization
tensor, that depends only on the fermionic 1loop. It is not
difficult to conclude that these models have the same anomaly. If
this is true, we can obtain the anomaly of the SM from that of the

AM. The anomaly of the AM is expressed as'?
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<6, 3%:°(x)> = (ag/mus, (16)

where a is an arbitrary regularization parameter, using now (4),

we have that

puL - '
e€ apAu gox (17)

so that, if we identify the field ¢ of the AM with the field x of

the SM, we get

<a”j‘:;5(x)> = (ae/2m)ePHF

]

M, 5
= < > :
ou 8ujsn (x) (18)
So, as we have proved that the two models have the same anomaly,
we are stimulated to ask if the Feynman graphs of the two models
are also related . Let us start calculating the electron

self-energy to 1-loop

k

P _ ez‘[(dzk/“nz)?u 1

p *+ k

V.o
¥ D . {19)
7o(pa + kg) w

where Dﬂv is the photon propagator at zero order, that is given in

(12) . Substituting (12) in (19), we obtain that

/"JM\\ =Y (p) = ezj(dzk/4 2)[ L 2 |;
> - n ‘p(pv ¥ x,) X2

(20)
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for the case of the massless AM, we have also:

-y
- ~
- b ]

£ — = - g2[(d2k/4n2)[ —1 ][ ki ] =) (P

7 (P, + k)

so that

Yo (B) = = (e/9)7), (p). (21)

It is also not difficult to show that for the 1l1-particle

irreducible graphic of the 4-point Green function:

f g = T(p,,p,),

the relation is given by:

A

r.(p,,p,) =+ (e/9)°T (p,,p,) (22)

.In general, the 1PI graphics of n-point Green’s functions

will be related, at least at 1-loop level, by:
m _ (n}
T = (-e/9)T. (23)

For graphics with photon external legs, there will exist similar
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relations to that in equation (10a), by repeated use of the fule
(10b) .

The above relations were obtained using the propagators at
zero order. If we use the full photon propagator (and_we know that
the photon will acquire mass) we can see thét the equivalence will
be established between the SM and the AM with mass.

In this case, it is easy to see that the complete propagators

of the photon and the pseudoscalar field are given respectively by

D;v(k) = (k% - mfy*[-guv + kukv/k?], with m’ = e’/m , (24a)

and )
D°(k) = Z¢(k2 - m;)", (24b)
with Z¢ = (1 =- Aggfnfq and m; = m§z¢.‘Now, we can recalculate the

electron self-energy, obtaining:

2en(P) = = 257 (e/)7Y, (). (25)

If the masses are identified by making use of the arbitrary

parameter a in the AM, we come to

m = m; > a=mn(l- nﬁ/ez)/qz. (26)



CBPF~NF-018/91

~10-

The other n-point 1PI vertex functions can be similarly

obtained.

IV) Nonperturbative approach:

In this section we intend to show the relation between these
models directly, by solving exactly the SM in an arbitrary gauge
of Lorentz type, and then show that in a particular gauge the
correlation functions can be related. For this we will use chiral

15,16

rotation as a decoupling transformation . So we start from the

Lagrangian density

- - - 2 - =
L= Pr,(i8, - er )V - (1/4)F  F  ~ (1/2a) (3 A))" + T A, +46 +6¥,

(27)

and using the identities (3) and (4) we get
g =Py, (16, - ga n - igr 8 x)v + (9°/2e°)x o'z - (1/2ae®)n o'n +
[ [ 7] S i .
+ (g/e)Ju[aun + € 48 x]. (28)

HY V

Making now the transformation in the Euclidean generating

functional:
U = exp(-lgn + 91§Z]W' = 05W' (29a)

¥ o= W'exp[ign + gréx] = $'ﬁ;, (29b)
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we obtain
7 = J»ﬁfnwfnnsx J, exp[—jdax 2'], (30)
where
B0 = Pr(ir 8,0 + (9°/2¢°)x oz - (9°/20e)m o'n +
il

+ (g/e)Ju[a n + Euvavx] + ﬁ'ﬁse + 5U5_\0'- (31) |

As the Jqpobian from the fermionic chiral transformation is not
trivial, it 1is necessary to compute it. In order to make its

calculation we will follow Banerjee7 and Roskies and Schaposnikls.
This consists essentially to use Fujikawa’s procedure17, so that

the infinitesimal fermionic Jacobian comes from:
DYDY = J_ DYDY’
with

J, = exp - Idzx Y ax(x) 8 (x)7 9 (%) , (32)

where ¢n is a complete set of normalized eigenvectors of a given
operator, with which we can expand the fermion fields. As is well

known this is an ill-defined quantity, so we regularize it in
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order to supress large eigenvalues. With this in mind we replace

the singular part of the Jacobian by

'y + 2
Lin § ¢l o7exe(- 2)o,00 - (33)
with A being the eigenvalues of the regulator in the basis ¢ - In
general we can choose the regularization operator as

D-ivua - gay, A

u uBy v (34)

and a is\the regularization arbitrary parmeter. Using it we can

rewrite (36) as

Lin § ¢, (x)v,exp (- D7/)0, (0 (35)

N~ n

and after some manipulations'’, we obtain

JF = exp - Jdax igax oDxX, (36)
21

where was necessary to use the method of reference 15 in order to
compute the Jacobian for the finite transformation. Now we can

write the effective Lagrangian density:
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2

£ = §r(r @)’ + (39/269x [ + nio|x - (g7/208%) 7 o'+

+ (g/e)Ju[aun + ewavz_ + W'ﬁse + Eusw' ' (37)

with mf = aezjnf. At this point we can introduce a new field in
order to get rid of the higher derivatives. For this we perform

the transformation
x = (e/vo)e, (38)

so that

B o= ¥ (200 + (@200 + w2]e - (g%/208%)m cn 4

+ (g/e)Ju[au'n + eew( av/va )¢] + W"ﬁse + §U5w' . (39)
It is easy to see now that, up to tﬁe source terms and a gauge
fixing, we can identify this effective Lagrangian density with
that of the axial model, provided that we impose the evenness of
the masses through the regularization arbitrary parameter, as is
stated in equation (26). Now one can calculate the complete Green
functions from the generating functional of the above Lagrangian
density.
The bosonic propagator is easily computed if we follow a

similar way to that used in equation (10), so we get for the full
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photon propagator:

D, (k) = (g/e)z[kukvnn(k) + ezeuhevo_[khko_/kz]!)w(k)] . (40)

where the propagators of the fields 7 and ¢ are given respectively

by
p, 00 = = (g/e)*(w/x!) , D,k) = (gh[1/0¢ - md) ,  (aD)

and consequently we obtain

D, (k) = [1/(1:2 - mf)]{- Sy [1 - a[l - (mf/kz)]] [kukv/kzl}.
(42)
From the above Green function we easily see that for the Landau
gauge (a = 0), the propagator (12) is reobtained with the addition
of dinamically generated mass, as we have asserted before.

Similarly we could work with the fermionic correlation functions.

V)Point-Splitting:

'Here we discuss the equivalence of the anomaly of these
models via the point-splitting method. For this we remember
firstly that the gauge current and the chiral one, in Euclidean

two-dimensional space, are related through

iKe) = iV ), (43)
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where we defined jH(x) = ¥(x)7*v(x) and jg(x) = W(x)1u1SW(x)..So,
we only need to calculate the vectorial current and, from it,
obtain the chiral one.

In the point-splitting method we can define  the

18
vactorial current as :

e = /2| wp, e + . e, (44a)
and
x+E/2
j”(x,e,a) = y(x - 312)1uw(x + c/2)exp{—ie(2a +1)I dzvhv(z)},
x=€r2
(44Db)

where a is the regularization parameter. In principle the above
current will be gauge-invariant only in the particular case when
a= =-1; below we will see that the introduction of a new
gauge-dependent external field, the Wess-Zumino one, restores the
gauge invariance for any value of a.

The averaged vectorial current is then written as

f

x+E/2
<j (x,e,a)> = Tr{r G(x +¢e/2,x -¢/2,A )exp{—ie(Za + 1)Idszv(z) p
H B 1 xt€/2
(45)
where G (x + €/2,x - cjz,Au) is the fermionic Green function in

presence of the external field Au(x), and is given by
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efz,Au) = exp[—ie[x(x + e/2) - x(x - 8/2)]]Gﬁ(é),

G (x + e/2,x -
(46a)

and G (£) is given by

T
G, (g) = (-ijzn)"—g——. (46b)

Expanding the expression in powers of £, we obtain that

. 7vcv
<ju(x,e,a)> = (-i/Zn)Tr{vu[l + 1ers(aax)co]—__zz__[1 +

~ie(2a + 1)e"A"] + 0(&:2)}. (47)

Taking the symmetric 1limit defined in (44a), and after

straigthforward calculations, we see that the current defined in

(44b) is given by

<jH(x)> = (e/m) [%"v’" - aauv]av(x). (48)

Now, 'with this result at hand we can compute the divergence of the

currents:

<8uju(x)> = (e/n) (1 + a)auhu(x), (45a)

<83, ((x)> = ~(iea/m)e, 8 A (x). (49b)
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For a = -1, there is no gauge anomaly, all anomaly is concentfated
in the chiral current.

With the above results we discuss the equivalence with the
AM. For this we use the decomposition of the gauge field in

equation (4), and obtain:
<8, 35, (x)> = (3/m) (1 + a)om, (50a)
and
<auj':f(x)> = -(iag/m)ox. (50b)

The divergency of the chiral current is exactly that for the AM,
as can be seen in the work of Banerjee7 and, for a =1, in the
original work of Rothe and Stamatescu®’. Besides for a special
gauge choice (n = 0), as is made in reference 14, the vector
current vanishes as in the case of the AM. This result
corroborates and clarify the observation in Banerjee’s work, that
there is a "striking resemblance between the two theories"®.
'However it could be argued that the arbitrary parameter
appearing in the anomaly of the AM, would not appear in SM because
of gauge invariance. This argument is not wvalid because a
Wess-Zumino field can be added, without changing physics, and the
13

gauge invariance restored for any value of a .

In the point-splitting method this can be made by a suitable
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redefinition of the vectorial current,

X+E/ 2
sH(x,c,a) = F(x - e/2) 7w (x + c/2)exp{ie[-(2a + 1)J'dz”A”(z) +
x-£/2
x+E/2
- 2(a + 1)I dz”a”e(z)]}, (51)
x=£/2

where the fields Au(x) and 6(x), change by a gauge transformation

as:

Au(x) > Au(x) + aua(x),
(52)
6(x) » O(xX} - a(x).
With this definition we see that the gauge invariance is restored

for the vectorial current.

Vi) The effective action:

In this section, we calculate the photon effective action for
the S5M in the trivial topological sector, showing that it can keep
its 'mass not fixed (through an arbitrary parameter) and
simultaneously preserving gauge invariance. Usually it is argued
that this symmetry can be preserved only for the mass obtained
originally by Schwinger’ (ng2= e’/m). Recently however, Harada and
Tsutsui'® showed that, if we perform the integration in the gauge

volume, this gauge symmetry 1is kept for an arbitrary mass
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(m’

= aezfn). Here, we intend to reobtain the result of Harada and
Tsutsui'’® without performing such integration.

Starting from the Lagrangian density (5) without the sources,
performing a gauge rotation, doing an integration by parts and

neglecting surface terms, we obtain that
_ Tk 2
2 = yYr (iau)w + igx<8uju’5> + (1/2e")xooy, (53)

Now, we can invert the transformation (4) for the field x, so

(54)

t 4
x = (elzg)euv[ L ].

and after the substitution of the divergence of the chiral current

calculated above, we have for the effective action:
2 -1 2 v
Serr = (“1/4)Id'x[Fuvu [u + n%]F” ], (55)

where mi = ae’/m. This expression is identical to that obtained by
Harada and Tsutsui for this model, but has appeared in a
compietely different way, without wusing any gauge group
integration at any stage. This is an intriguing result, because it
is generally assumed that the SM is gauge invariant only when the
parameter a is made equal to one, except if one introduces the
Wess-Zumino term via gauge volume integration. Besides it is not

difficult to verify that the above procedure does not lead to an
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analogous result for the chiral Schwinger model (CSH)‘. In fact we
think that this occurs because when people are dealing with such
models, the gauge-fixing term that comes from the Faddeev-Popov
trick is not considered, and the absence of this term corresponds,
in practice, to a particular choice of the gauge-fixing parameter
a. Had we used this term, the longitudinal part of the gauge field
would appear in the SM and so, the effective Lagrangian density
would be not gauge invariant. On the other hand, this part of the
gauge field appears quite naturally in the CSM, and this prevents
the gauge invariance of the effective Lagrangian density.

In our opinion, this makes necessary the consideration of the
gauge-fixing term from the begining in the Lagrangian density.
Consequently we would have a modified Wess-Zumino term. This

conjecture is pfesently under investigation.

VII) Conclusions:

We have proved that the SM and AM are equivalent, and this
was made through the rules necessary to go from one model to the
other and that their effective Lagrangians are identical, provided
that, the masses of the models are identified. Similarly, other
models, as the csM® and the generalized sm'? , may have their
"partner models" with Green functions related. In this sense they
would be redundant models.

Besides, as a byproduct of our calculations, we rederived the

effective Lagrangian of the SM obtained in reference 11 without
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any gauge volume integration, and discussed the possible

explanation of this intriguing result.
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