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ABSTRACT:

Ricci flat solutions for conformally transformed
Schwarzschild and Kasner metrics are shown to correspond to
Schwarzschild and Kasner spacetimes respectively.
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The Birkhoff theoremC1D states that a spherically
.symmatric gravitational field in empty space must be static
with the metric given by Schwarzschild solution 2> . We
establish here the result (somewhat similar in spiritd that
the Ricci flat solution corresponding to conformally
transformed Schwarzschild metric describes a Schwarzschild
spacetime. This is analogous to the fact that in four
spacetime dimensions the vacuum solution corresponding to a
conformally flat metric is the flat spacetime. We consider
also Kasnerca) metric Cwith time dependent metric tensord
and demonstrate an analogous result for this case as well.
The expressions of the diagonal elements of Riceci tensor are
formidable even for the simple cases considered here. To
handle ¢the information contained in them we construct
suitable linear combinations of these elements using the
algebraic computation preogram SHEEP. This results in very
simple differential equations and consequently the whole set
of equations may be easily integrated.

The conformally transformed Schwarzschild matric may be
described aby Oyt " B, g = 1B, ggn= crone, g™
CrSin 8-W)° where W= W(t,r,6,¢) is the conformal factor and
B=1-Lsr, L=const. We find for the off diagonal components
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The useful combinations of the di
to be
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Writing W't=F , W'r=A . W’9=D . W.¢=C and reguiring
that the Ricci tensor vanish we obtain F e = E)t=0. F ¢-
C't* . F.r= A.t= F B.r 7CeRd, A.e = D.r=D/r. A'¢ = C.r= cr,
D'¢= C.e =C Cos 6 7/Sin 6 and C.¢= CD.B Sin @ -D Cos 8O5ing
corresponding to X2 =0. They may be readily integrated to
give
F= gCLd 31/2
D= K Cos €
C= K Sin 8
e
3D
where K= rCa Cos ¢ +b Sin ¢> and a,b are constants., It
follows also that
A= K Sin 6/ +f(r,td c4>
On now making use of F t+ Ba A r=0 following from X1=0 we
find S+t =gCt)L(4r—3L)/C4r4) which implies g =0.
Consequently, W L= F=0' and A t=A r=0 (e.g. f=const.D.

Imposing then X3 =0 leads to

agonal components are found
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23(B-1) K Sin @-r + (3B-1) =0 s>

Hence f= K=0 and ¥ must be spacetime independent for Ricei
flat solution. The simplicity of the demenstration here and
in the next case owes to the determination of simple
combinations of the octherwise very complicated dlagonal

elements of the Ricci tensor which we do not present here.

Consider next the conformally transformed Kasner

P 2 Q 2 _re R a2
metric with gu'==1/we. g, =<tFw?Z, g _=ctCw= g_=ctFw
2. 2.2 _
where W=W(t.,x,y.2) and P+Q+R = P +Q +R™ = 1 which ensures

that we have a vacuum sclution when W is a constant. It is

convenient to parameterize P, QR as P =-U/Ci+U+6 2,

-

Q=C1+UD.C1 +U+U2). R=1+UD /1 *U+UB) where U 2 1 and we note
that PU1AD=PCLO . X1/D=RC(WLW,RC1AD=0CU). The nondiagonal

elements are
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For these components to vanish we find W x=F‘(x‘)tP.

w Y?GCy)tQ. v z-—-'HCz)'LR where F,G,H are arbitrary functions.

The following set of combinations of the otherwise quite

messy diagonal components result in simple expressions
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where the substitution W .= (-1 Pg y* 1P P

corresponding to X3=0 has been made in X1,X2Z,X4. Oon
requiring X1=0 identically we find
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by % =0
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It follows that 6y= F x=0 which implies W t=0 and X2



5 CBPF-NF-018/89

reduces to a term proportional to H z which must then also

vanish. Inserting these results in X4 leads to FE+GB+HE=O
implying F=6=H=0 and for this case as well only a spacetime

independent conformal factor is allowed .

ACKNOWLEDGEMENT: Acknowledgements with thanks are due to Dr
J. Aman for patiently introducing us to SHEEP- CLASST.

REFERENCES:

1. 6. Birkhoff, Relativity and Modern Physics CHarvard
University Press, Cambridge, Mass., 1923).

2 See for example S. Weinberg, Cravitation and Cosmology.
John Wiley, 1972, p. 337,

2. E. Kasner, Amer.J., Math. 43C¢19210217. See alsc L.D.
Landau and E.M. Lifshitz, The Classical Theory of Fields,

Pergamon Press, 1871,



