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ABSTRACT

Renormalization-group (RG) techniques are currently used to
defiVe relevant quantities in the viginity of the critical point.
We present here a real-space RG procedure which directly -yiélds
the order parameter 4or aff values of the exteanal pwuﬁetyu.(e4ag
temperature). It is as simple as a mean-field calculation, although
it provides non trivial results, which can be systematically im-
proved. The method is succesfully illustrated on the square-lattice
Potts ferromagnet. The whole approach suggests that the order pa-
rameter on a hierarchical lattice is, on every site, proporiional

to Aits coondination numbexr.

Key-words: Equations of states; Renormalization-group; Potts model;
Order parameter; Hierarchical lattice.
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The renormalization-~group (RG) techniques have been initially
deviced for calculating critical exponents; the real-space ver-
sions enable also the calculation of critical points (phase dia-
‘grams, in general)., However these techniques are commonly used on
ly in the vicinity of the critical point, although in general there
is no fundamental reason for such a strong restriction if approxi
mate answers are searched. As a matter of fact, RG frameworks are

already available[l'zl

» which enable the calculation of the free
energy for arbitrary values of the external parameters (tempera-
ture T, applied field H, etc.) through appropriate derivatives of
the free energy, the equatioﬁ of states (as well as the specific
heat, susceptibility, etc.) can be obtained. However these proce=
dures tend to be rather heavy, operationally speaking. In the pre
sent paper, we develop a simple real-space RG formalism which ena
bles the dinrect calculation (without going through the calculation
of the free energy) of the order parameter as a function of tem-
perature {or arbditranry hvatau 04 it. The procedure goes, as we shall
see, through the inspection of the microscopic configurations of
the system, thus developing a good intuition of it. Although  we
will be referring to the H=0 case, the method trivially extends to
the calculation of the complete equation of states (in principle
even as a function of the relevant concentrations whenever we are-
facing disordered systems).

We consider a d-dimensional hypercubic lattice of linear size
L, and assume that first-neighboring sites ferromagnetically inter:
act, K E.I/kBT"being the dimensionless coupling constant (we are concerned

about models such as the Ising, XY, Heisenberg, Potts models or similar ones).

In the L+« limit, the order parameter M can be defined as M:NiUO/Ld,
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where NL(K) is the thermal canonical average number of sites whose
spin is,pointing in the éasy magnetization Qirection (say the oi=0 axis for
the g-state Potts ferromagnet) minus those whose spin is pointing in any other
direction (i.e., oi=1,2,...,q-1); if the spins can be inclined with respect to
" the z-axis (as it is the case for the Heisenberg model, for instance), the
z-projections have to be considered. Furthermore, we associate an
elementary dimensionless magneton u with each site of the lattice;
we could in principle choose u=1, but we will rather leave it as
a variable since it will change under renormalization. Following
along the lines of Kadanoff for understanding scaling, we divide
the system of LY sites into é system of L'Y cells of linear size
B=L/L' >1. We then associate with each cell the renormalized var
iables K' and u' which will depend on K and u. The analytic depen
dences will differ from one RG to the other, but they all have to
satisfy that the total magnetic momentum (extensive quantity) of

the system be preserved through renormalization, 1.e.
1 t
N ,(KDu' = N_(K)u (1)

Dividing both terms by L¢ we obtain

M(K')u' = M(K)p BY (2)

with M(K')==NL,(K')/L'd. If we start with K and u(o) and perform

n iterations in Eq. (2) we obtain

hence
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(=), (n)
M(K) = 1im My (4)
n+w Bnd ‘,1(0)
By arbitrarily choosing p(o) =1 we obtain
M(K) = lim M(k¢)ypu(n) pnd (5)

n->oe

This formula has to be used together with the (standard) RG re-

currence for the coupling constant, namely
K* = £(K) - (6)

which normally admits three fixed points: K=0 (stable under re-
normalization; paramagnetic phase), K== (stable; ferromagnetic
phase), and K=K, (unstable; critical point). Two typical situa-
tions occur when using Eq. (5): (i) K~<Kc,-hence K(m)=0, hence
M(x‘®?)=0, which yields (through Eq. (5)), M(K)=0, as desired;
.(ii) K:>Kc, hence K(w)==6, hence M(K(m)) =1 (conventional value

for T=0), which yields (through Eq. (5))

M(K) = 1im /s (7)

n-rco
This is the final formula which provides the thermal dependence
of the order parameter in the non trivial region, namely fbr'T<T;.
To close the procedure we have to specify how the RG recur
sive relations for K(i.e. Eq. (6)) and for u are determined. 1In
particular, let us anticipate that the RG equation for p will ty

pically be of the form
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p' = g(]()_..p (8)

with g(w)::Bd >g(Kc]‘>g(ﬂ) »0. From Eqs. (6)~(8), it is straight
forward to establish, in the T~»T_  limit, for the. correlation

length £n£|T-Tc|"v and for M'\:A(I-T-/Tc)B that

vV = LnﬁB/ln[df(K)/dK]K ' (9)

<

and

C

B = zn[Bd/g(Kc)]/tn[df(K)/dK]K (10)

The critical amplitude A cannot be analytically determined (be-
cause Eq. (8) is invariant through the scale changement u->Aiu and
u' > Ap' for arbitrary A) bﬁt only numerically (by iterating).
Several procedures are available in the literature for de-
termining £(X): here we shall adopt that already used in Refs. [3]
.and [4] (for the g-state Potts and spin 1/2 Heisenberg models re
spectively). We renormalize a two-rooted graph G (with chemical
distance b between the roots, and which might generate an hierar

[5,6]

chical lattice with intrinsic fractal dimensionality db=£n Nb/£nb,where

N, is the number of bonds of the graph) into a smaller one G' (with

b
chemical distance b' between the roots, and which might_generate
an hierarchical lattice with dimensionality db,z‘b1Nb.Z£nlo‘,Nb.
being the number of bonds); it follows that B=b/b' and . Bdt_-’b' = Nb/Nb'
See Fig. 1 for an example (bf=1, b=2,-Nb=S, Nb.-l,dby=db=£n5/£n2),
We then preserve the correlation functieon between the two roots

(noted 1 and 2Z) by imposing
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'M' 1 +K’ "“
3,6,.0..,N C3,b,.4.,N,

5 (11)

where and are the dimensionless Hamiltonians
Xlz..lN's NIZQIQNS

corresponding respectively to the small (N, sites) and large (N,
sites) clusters, and Ké is an additive constant to be determined.
Eq. (11) completely determines £(K); we shall note RGb'b the asso-

ciated RG. For the example illustrated in Fig. 1(b) and assuming

Potts interactions (H’/kBT = '-qI(.E ] 8. ,a.; ci=1,2-,.. .y, V1) mobtain[3]
1, 1) '

{(through Eq. (11))

£ = 2t242t%45(q-2)t" +(q-2) (g-3)t° (12)

1+2(q-1)t!+(q-1)t"+(q-1) (q-2)t*

with the theamal t&anémi&éivity[3]t defined through t E(l-e'qg)
/{1+(q-1)e"%%1 (analogously for t').

Let us now present the new procedure we have deviced to de-
termine g(K). In order to break the symmetry (needed for estab-
lishing the equation for the order parameter) we {impose the spin
of say terminal 1 (of both small and large graphs) to be along the
easy magnetization direction (say the ¢,=0 axis), the rest of the spins
(terminal 2 included) being free to take all possible orﬂmﬁatﬂxw
(q copfigﬁrations for each spin); each cluster configuration will
be.wéighed with the corresponding Boltzmann factor, and will be
associated with a value for the cluster magnetic -momentum m where each
spin contributes paopontionally to 4its cooadination number (later

on we shall come back into this point). We then impose

>, o= <mR (13)
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where <...> = .denotes thermal «canonical average; Eq. (13)
determines g(X). The whole procedure is illustrated for the spin
1/2 Ising ferromagnet (df/kBT = -K z cicj; o,=¢ 1) in Table 1. This

i,j
result generalizes into that for the Potts ferromagnet as follows:

L ]
2698 4 (q-2) W s 106> 9%410(q- 2)e3qK+8(3q-5)§2qK
ed%', (g-1) 99K, 2(q-1)e3%%,4(q-1)e2 K

£:2(842-399+45)e 3%+ (293-1692+44q-40) y

(14)
+(9-1) (5q-9)e®4 (q-1) (g-2) 2 '

where to construct the last column of a table such as Table 1 we have used the
fact that the Potts order parameter is proportional to (q<6Cr 0>-1)/(q-1)

The results obtalned by using Eqs. (12) and (14) together
with formula (7) (BY=5 in-this case), as well as those corresponding
to higher values of b are presented in Figs. 2 and 3 and Table 2.
The exact critical point (t = ( +1) 1) is recovered for all Rb 'y
(this is a consequence: of the self-duality of the chosen clusters);
the general trends are very satisfactory, and the mumerical values
quite reliable (they can be further improved by performing extra
polations for increasing b and b'[7]). Note however that the pre
sent RG's fail in reproducing, for q>4, the first-order phémetrqg
sition expected for d=2 Bravais lattices; to overcome this diffi
culty (shared by all available phenomenological and  hierarchical-
lattice-like RG's for the pure model) the RG parameter-space. should
be expanded[sl. '

lL.et us now gé back to the point that every spin contributes,
to the cluster magnetization, proportionally to its coordination
number., This hypothesis follows from our belief that the order pa-

rameter on a hierarchical lattice is not uniform (same on all sites)
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as in Bravais lattices, but rather is directly related to the num
ber of neighboring sites with which a givenISite_is interacting.
The well known uniform spontaneous magnetization of Bravais lat-
tices should be a consequence of their translational invariance
(lost in hierarchical lattices). The hypothesis we are discussing.is equiva-
lent to assume that the relevant magnetic field (parameter thermodynami-
cally conjugated to the order parameter) als¢ is proportional to
the coordination number: this is precisely what several al.zt:hccrs[2’5’]'0:I '
have assumed within similar contexts. On different but . related
grounds, the analysis of the Blume-Emery-~Griffiths (BEG) model
points towards the same directiom. The BEG model in a Bravais lat
tice contains the q=3 Potts model as a particular casefif conve-
nient relations are assumed between the BEG coupling .constants;
the same fact occurs in a hierarchical lattice if and only if the
single-site tefm of the BEG Hamiltonian is assumed proportional
to the coordination number, Last but not ieast: if we assume in
the present RG framework an uniform order parameter, the succes-
sive approximations (increasing b and b') for 8 run away faom the
exact answern! Naturally the full calculation of the Gibbs energy
of a specific hierarchical lattice as fuhction of T and H - would
unambiguously clarify the situation. Such a treatment would also
tell us in what extent the present RG procedure provides the ex-

act M(T) for that hierarchical lattice; in any case we can.already

note that the =2 RG,, result for Bis mt%ﬁ)]/m%] x0.18,
which coincides with the value presented by Melrose®l as being

the exact one for the associated (Wheatstone bridge) hierarchical

lattice. For this lattice and arbitrary values of q we obtain
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- zngsggéfi)[s(1+q)+(xs;q;/EI/zcx;/ay[4o+18q;(5z;q)/a]}; (15)
en{(8+5q+13/9)/(8+q+7vq)}

Also it is worthy to mention that, for all the self-dual hierarchi-
- cal lattices considered in this paper, we have verified that, in the
q+e limit, v+1/d, (see [6]) and 8+1-1/d,.

To summarize, let us say that the real space RG procedure we.
have introduced here enables in principle the calculation, foa afl
temperatures (and similar external parameters), of the order parame
ter (s) associated with any Hamiltonian system. The calculation is
direct (no calculation of thermodynamical energy is needed}, helps
intuition (in the sense that micrescepic configurations have to be
visualized), it is as simple operationally as a mean field approach,
and it provides non trivial results which can be systematically im-
proved. Its degree of efficiency has been satisfactorily tested here
with the square-lattice Potts ferromagnet, whose exact thermal de-
pendence of the magnetization is still unknown for all q#2; furthér
applications would be very welcome.

At the early stages of this work we benefited from very fruitful
discussions with A. Coniglio; useful remarks from H.J. Herrmann are
also acknowledged Finally, one of us (CT) acknowledges hospitality
received; at a certain stage of the present work, from the Departa-
mento de Fisica of the Universidade Federal do'Rio Grande do Norte-

Bra;il.
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CAPTION FOR FIGURES AND TABLES

Fig. 1 =

Fig. 2 -

Fig. 3 -

Table 1 '-

Table 2 -

Clqsters used to construct RGb_,b for the square lattice;
® and O respectively denote internal and terminal (root)
sites. (a) RG,, transformation; (b) b=3 graph; (c) - b=4
graph. ‘

Thermal behaviour of .the order parameter for the q-state
Potts model: (a) RG12 for typical values of q; (b) succes
sive RG approximations for q=2 (Ising).

(a) critical exponent B8, and (b) amplitude A as functions
of q within successive RG approximations (&gq.latt., is
taken from [9]); dashed lines are indicative and have -been
used when the calculation was available only for integer-
values of q.

Establishement of Eq. (13) associated with RG,, for the
Ising ferromagnet (q=2)}. (a) <m>G;=2eK'u‘/(eK'4-e‘K');

(b) <m>G=(10e5K+8e—K-Ze'3K)“u/(e5K+2eK+4e'K+e'3K). These
expressions can be recovered as the q=2 particular case

of Eq. (14).

Successive RG approximate and exact values for critical ex
ponents-and amplitudes. A few numerical values are mis-
sing because their calculation would have implied in sup-
plementary non trivial computational effort.
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