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Abstract

Following the generalization of the Grassmann Algebra provided
by Quantum Groups, we introduce an extension of fermionic coordi-
nates and an action for the classical point particle mechanics which
has a symmetry that resembles a supersymmetric transformation.
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1 Introduction

For the last few years Quasitriangular Hopf Algebras or Quantum Groups
{1,2,3] have been attracting a lot of interest from physicists and mathemati-
cians. One of its interesting features is the fact that these theories can be
related to physical problems where the coordinates are non—commutative.
On the non-commutative space of a Quantum Group it was shown [4] to
be possible to define consistently a non-commutative differential geometry
and a simnple example was developed {5] on the quantum plane [G).

Recently it was shown [7] that one could understand these non-commu-
tative coordinates as the classical limit of the creation and annihilation
operators of the deformed Heisenberg Algebra [8] through the introduction
of 8 complex parameter ¢. In this case it is possible to interpret these
coordinates as a generalization of the Grassmann variables {7].

The deformed creation and annihilation operators satisfy the following
commutation relations [7,8]:

aa' — ga'a = q'N (1)

in the case of ¢ = exp(27i/k), with k an integer, it can be shown that these
operators satisfy:

a* =) =0 (2)

which shows to have a discrete spectrum. If, after a suitable change of
variables, we consider the classical limit of the above system, we get [7]

27 = gzz, i (3)

with
=@ =0 (4)

These classical coordinates, z and Z, can be interpreted as a general-
ization of the Grassmann variables [7]. The differential calculus with these
coordinates was constructed and it was shown to have an underlying Yang-
Baxter structure and a covariance of the equation under the action of the
two parameter quantum group GL 2 -3 [7].

Notice that if we take k — oo, ¢ — 1, eq. (1) becomes the usual oscillator
algebra with infinite occupation number, and the classical limit gives the
usual commuting coordinates. Taking k = 2, eq. (1) gives anticommutation
relations for a, a', the occupation number is two and the classical variables
are the Grassmannian ones. As for intermediate values of k the variables
interpolate bosonic and fermionic cases, it would be interesting to explore
these cases.

In this letter, we address the problem of constructing an action for the
classical point particle using these generalized Grassmann coordinates for
the case k = 3, and we show that this action has a symmetry involving these
generalized coordinate fields in a way very similar to supersymmetry. In
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section 2 we introduce these new g-fermionic generalized coordinate ficlds
and construct the action, in section 3 we analyse the symmetry of the action
and finally in section 4 we discuss the perspectives, possible consequences
of this discovery and some cominents.

2 g-fermionic coordinates and the classical
generalized supersymmetric point particle
action |

To understand how these generalized fields appear, we remind ourselves
that in supersymmetry we have a supcrspace with coordinates (z,1), 2? = 0
and ¢ a c-number to be identified with time (all our discussions here will
be at the classical mechanical level).

Functions in the superspace are polynomials in z, and this gives us two
different types of fields: fermions, that under commutation relations behave
like the Grassmann variable z, that is, anticommute among themselves; and-
bosons, that behave like 2% that is, commutes with everything. Transla-
tions in the superspace give rise to supersymmetry, and fix the dimension
of z with respect to ¢.

If now we consider the case 2* = 0, we will have three different types of
fields: those that under commutations relations behave like 2° (bosons, or
a sector-zero field); like z (sector-one field); or like 2? (sector-two field).

Having introduced these generalized fields, we define now the ¢-commu-
ta[tor {(from now on we call it quommutator) between two fields A" and
Bl as:

[A"'l,B(‘]], = g /DA B _ g(re/2) pla) glr) (5)

where the supperscript indicates the sector of the field. This is the simplest
relation which garantees that any boson obeys the usual commutation re-
lation with any other field, because in this case the g-factor disapears. It
gives the correct limit for Grassmann variables in the case k¥ = 2 and, in
the limit ¥ — oo we recover the usual commutator.

To fix the dimension of z, we introduce the following transformation in
the g-superspace:

z = 2’=z46V

t = t'=1t4 ¢z, (6)
with /) an infinitesimal constant of the sector one, ensured by homogeneity
of 6z .

The factor 2? is chosen in the t-transformation because in general, the
product of a sector-two with a sector-one field yields something that lives
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in the sector-zero. We extend the case of bosons and fermions so that,

in general, the product A®?B(?) belongs to the sector (r + s)mod 3 in the

case of k = 3. We will discuss in a moment some subtleties related to the

product of these fields. In this t-transformation the factor g is needed to

preserve the reality of t, and this is decided by the choice [¢!!, 2], = 0.
Equation 6 fixes the dimensions of z and ¢!}, which are:

2] = [} = 1/3. )

We can also construct a transformation with an infinitesimal parameter
which belongs to the sector-two:

2 o =24
t — t'=t+qze?, (8)

where we chose [z, €¥), = 0, and this gives {¢!?)) = 2/3.

Our next step is to construct an action which extends the supersymmet-
ric point particle through the use of these generalized fields. This gener-
alized particle is described by the coordinates (z(t), y{)(t), p?Xt)), in the
same way as a supersymmetric point particle is described be the coordi-
nates (z(t), ¥(¢)). We call the $¢)(t) the g-fermionic generalization of the
coordinates or, simply, the quermionic coordinates.

The action involving the quermions is given by

S = / dt(%:i:’ — gCW’ i)y, (9)

where we choose the mass equal to one. The first derivative in the quer-
mionic term is chosen such that the classical equations of motion for %"
resemble that for fermions. The cocycle-type factor C) is required be-
cause when we multiply two objects of different sectors, A"V B®), it must
behave like an object of the sector (r + s) mod 3, but if this factor is not
inserted this product would not quommute correctly with A" or B!}, and
underlying this point is the fact that in the fermionic case the fields anti-
commute even if they are equal but in this generalized case we choose equal
fields at equal points as commuting ones.
This cocycle-type factor C!*} actually behaves like a sector—counter,
that is,
CWA) = gi g ot (10)
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Finally, with the choice [, ¢!}, = 0, taking all the fields as real, the
second term in the action, eq. (9), becomes real and is a representative of
the zeroth sector.

3 Analysis of the symmetry of the action

We now want to show that the action, eq. (9), has a symmetry, by using the
infinitesimal parameter ¢(!), which resembles a supersymmetric transforma-
tion. As e} is a sector—one object, it is natural to choose (1) ~ €18/,
bz ~ V" and 6yi?) ~ 18 "yY1), that is, a cyclical combination of
the coordinates.

To fix the multiplicative factors in the variations we should keep in mind
that each of these variations must be real and behave like the field itself
under quommutation with the other fields. This determines the powers of
C® and ¢ in each variation.

Now, in order to determine (I, m,n) we compute 65 and impose it to be
at least a total derivative. This gives that n is even, and the condition that
[¥"] is greater than zero implies that m = n = 0, ! = 1, and the dimension
of ¥ is

(v =i/3. (11)

The transformation is given by

bz = CWMyt)
vV = gCM; (12)
§6D = $qelypl)

and the action submitted to this transformation behaves as
d 2
55 = & 0y
S :I:/dtdt(e y), (13) |

where we used [¢(), ()], = [y}, )], = 0.

As in supersymmetry, the action transforms as a total derivative. An-
other similar feature is that one of the fields, ¢{!), transforms as a total
derivative which can be taken as indicating that !V is the highest term
in a z-expansion of some superfield, in fact, & naive expansion of a scalar
superfield could be written as @ = z+2¢9® 4+ 22¢{!). Similar arguments can
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be used to construct a transformation involving the sector-two infinitesimal
parameter ). Once more, powers of C and ¢ are fixed by constraints of
homogeneity and reality of the transformation. The powers of the deriva-
tives are immediately determined since we know all dimensions. We then
get

fr = —g'CPBM

5¢(1) = ;l:qzemgt’;m (14)
sy = gCWez,

with the choice [¢®), )], = [p?, ], = 0.
However, in this case 65 is not a total derivative. In fact its variation.
is given by

5S = /dt (—q’C('leu)%(i\bm) + qc(.)ie(zji,(z}:) ' (15)

The fact that in this case a field squared does not vanish implies that ¢
cannot be taken as an infinitesimal parameter of a transformation under
which the action is invariant.

Concludingly, the action, eq. (9}, is invariant under the generalized su-
persymmetry eq. (6) which takes the bosonic component into a quermionic
one and a quermionic component into another quermionic one.

4 Concluding Remarks

Using the generalization of the Grassmann variables provided by Quantum
Groups [7] we introduce in this letter a class of fields which behave differ-
ently from bosons and fermions which we call quermions. With quermionic
coordinates we construct an action with a symmetry which is an extension
of the standard supersymmetric classical point particle.

We believe that the role of these quermions in the relativistic case,
specifically in two or three dimensional Quantum Field Theory, it will be
that representing particles with arbitrary spin, particulasrly in three di-
mensions without the need of the Chern-Simons term [9], the reasons are
the following. Firstly, as we mentioned in the introduction, the variables
we considered correspond to an extension of the Grassmann variables and
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for 2 < k < oo interpolate between Grassmannian and commuting vari-
ables. Secondly, the way these variables and fields quommute could be
understood as a generalization of the commutator through the R-matrix of
GLgp 4> [5,7) and it is believed that particles quantized in such a way would
have Braid Group statistics {3]. Lastly, the dimension of the quermionic
coordinates depends on k, and for the standard supersymmetric case it cor-
responds to the conformal spin in two dimensional conformal field theories.

Finally, we consider that it would be interesting to investigate the field
theoretical approach in two [10] and three dimensions, the superspace for-
malism [11] and the possible consequences of these theories for string the-
ories and in condensed matter physics.
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