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ABSTRACT

The relation between the potential r® and the
asymptotic behavior of the eigenvalues of the ordinary wave
equation for space dimension N - =« is found. An analogous relation
ijs discussed when the wave egquation involves an iterated
Laplacian. A criterion is given to determine when a potential
should be considered singular, depending on the space dimension
and the degree of ijteration of the Laplacian. Finally, a
modification is suggested for the approximation proposed by Witten

which sensibly improves the results for the ground state energy of
the hydrogen and helium atoms.

Key-words: Solutions of wave equations: bound states; Field theortes
in higher dimensions.
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We apply the 1/N expansion method''? to the wave equation
n,n o

(-1) Ay -~ — ¥ = Ey . (1)
r

Here A is the Laplacian operator, n is an integer, « and B are
parameters and E an eigenvalue. For simplicity we restrict
ourselves to spherically symmetric solutions, thus we put

A= — +— — ., (2)

Here N is the space dimension. The transformation

1-N
¥y =1r ¢ with as — (3)
2

eliminates the derivative of order 2n-1. In particular

d®p .
ay = x° pucialblLat) 272 5 . 4
r

By making the additional transformation (dilatation)

2
r = N R with T = — (3)
2-g
we obtain in the case of second order (n = 1) the following
equation for ¢
1 d%p a(a+l) o N2t (6)
_— + ¢ — — P = E P.
N° dr? N°R? RP N

For large N, the dominant form of Eq. (6) is Ve ¢ = E ¢ where

1 o 1 . (1)
eff EE_RB]NE': _
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The minimum of the effective potential V_ .. is at

ff

1 |3
n=[ﬁ]2 | (8)

The case of the Schrddinger equation for the hydrogen
atom in N dimensions leads to, (introducing now the electron mass
m and charge e),

4 (N-1) (N-3)
Vets = Bo 3 [ 2 - oz ] (9)
where
E, = - me'/2 (10)

is the exact ground state energy of the hydrogen atom in 3
dimensions. According to the traditional 1/N expansion method®!the
approximate ground state energy in three dimensions is obtained by
taking the 1limit N - o in the parenthesis of Eq. (9) and
thereafter putting N = 3, in which case the result Veoff = -4Eo/9
is obtained. We want to call the attention to the fact that a
better result is obtained by a straightforward replacement of N =
3 in Eq.(9) to give Vogg = —BEO/S. Note that in Egs. (4) and (6)
the term a(a+l) vanishes for N=3., An analogous procedure leads
to a considerably better value for the ground state energy of the
helium atom too. In fact, the traditional 1/N exﬂansion method
yields the value -1.217 me' for the ground state energy of the
helium atom while by simply using N = 3 in the corresponding
effective potential yields the value -2.434 me' which is
84% of the experimental value -2.30 me‘, Comparable accuracy (88%)
requires at least three terms in the selies expansion in 1/N. Values

as close as 99.96% were obtained by extensions of the method which
single out singularities responsible for slow convergence?.

We see from Egs.(7) and (8) that for large N the ground
state energy depends on N like

E « N 2P, (119

which shows explicitly the relation between the behavior of the
ground state energy for N » «» and the power g of the potential.
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Eg. (1) for n=1 (second order equation) in three
dimensions can be solved approximately by the WKB method which

should be reliable for large quantum numbers v. The eigenvalues
behave like

E op 2P (12)

It should be noted that the energy eigenstates for large quantum
numbers v have the same functional dependence on B as the ground
state in N dimensions for large N.

Analogous considerations can be made for arbitrary n.
For the calculation of the effective potential we are only
interested in that part of A"y = A“(@/r”hiwzj which does not
contain derivatives of ¢. We then use the following formula’

n

(-1)7a7r2 = 22" (aa)...(Aen) (Asnr2) . .. (AeN2onor )22 (13)
with
A= (1-N)/4-n=a/2-n (14)
to write the effective potential
A o 1 15
v .. = [ —_—— ] —— (15)
eff NePR?M gP nfT }

where here T = 2n/(2n-g) and A is a number which depends on n and
N; in the special case n=1, A(1,N) = a{a+l), and for large N the
asymptotic behavior is A(n,N) = (N/2)> ;

The first derivative of Ve{f with respect to R is

dve“ ap 2nA

- (16)
dr RB+1 - NanZnﬂ

and equating (16) to zero yields, for large N, the extremum
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1

[ 2n ]zn-B
220yp

The value of the second derivative of veff at Rb' for large N, is

R =
D

. (17)

[dzvef f] of (2n-8) (18)
——= | = T
e ]

The ground state energy is obtained by replacing R in (13):

o 2n - B
E = — ' ° (19)
9 2ng 2n B 2n
N 2n-g [ ] 2n-g
220

. 3
In particular, for 8 = 1, n = 2 we obtain E = - 0.36 o

which should be compared with the numerical resulz - 0.3626 o'
{See Ref.4).

We see from Eg. (18) that when g > 2n the extremum in R
is a maximum; the effective potential has no minimum and we say
that the potential is singular. In the usual case n = 1, any g = 2
gives a singular potential.

For n = 2, and 8§ < 4 the potential has a ground state
and it is non-singular.

The fact of the potential being singular or not depends
on the power of the Laplacian and the space dimension.

The Green’'s function of A™ { its "Coulomb potential), is®

G(r) « ['(-n+N/2) 7", (20)

Thus 8 = N - 2n and 2n - 8 = 4n - N. If 4n > N the potential is
not singular.
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