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ABSTRACT

We study an extended version of the discrete N-vector (of cu-
bic) ferromagnetic model within a real space renorﬁalization group
approach which preserves the two-spin correlation function. The
N-evolution (for @Eaﬁ values of N) of the Wheatstone-bridge hierar-
chical lattice phase diagram, which presents paramégnetic, inter-
mediate (nematic-like) and ferromagnetic phases, as well as of the
thermal (v) and crossover (ﬁ).Critical exponents, is presented. The
self—évoiding walk problem is recovered in the N-+0 limit, .= and
the so called "corner-rule” is reobtained in a larger context. .The
Ising, N- and 2N-state Potts'ferromagnets are recovered as parti-.
cular cases. An iﬁterchange of stability occurs at N=N*=6.9 in
such a way that the ZN-state.Potts special point (where all three
existing phases join) is.a:multicritical one if N< N* but only a
criticél one if N >N* (consistently @(N*}=0). For the cubic mo-
del, v(N) presents a maximum at N=N___=1.5. The results are ex-
act, for all N, for the Wheatstone-bridge'hierarchical-lauﬁse,and
approximate, for'NEQZ, for the squgre lattice. LaSt'bﬁtrmm least,
we discuss the commection between the present approach. and the pheno-

menclogical renormalization group.

Key-words: N-vector model; Planar self-dual; Phase transition; Hi

erarchical lattice,
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1 INTRODUCTION

In recent years several real sﬁace renormalization group (RG)
methods have been developed, whose transformations ‘des~
cribe with reasonable aporoximation spin models on
Bravais lattices, and become exact for the same systems (if clas-
sicél) on hierarchical structures. The Migdal-Kadanoff approxima
tion as well as the methods developed in Refs. [1-4] are examples
of this.kind df'approéches; Even if sometimes the approximations
involved are not able to-reproduce important qﬁalitative features .
of models on Bfavais lattices (like the first-order transitions
of a Potts ferromagnet for sufficiently high number of states[5]),
other results can even turn out to be exact, especially when the
choice of the basic RG clusters respects some important swumﬁxie#
of the infinite system (like self-duality for the sqguare lattice).
Moreover, as discussed in Section 4 of the present maver, if ap-
plied to big clusters, the methods of Refs, [1-4] can be shown to
have the same potentialities as a phenomenclogical renormalization
apnroach [6], in which the interfacial tension between different
domains in a block is used, in place of the correlation length, as
the basic scaling cquantity.. As illustrations of these potentialities see

Refs. {7,8].
In this context, particularly appealing is the possibility of

treating, within relatively s;mple renormalization schemes, whole
classes of modéis, like the q—s£ate Potts model for arbitrary q,
or the Z(N) model for arbitrary N. Whereas for the former the re
nbrmalization transformation considered does not require a para-
meter space with dimension iﬁcreasing with q, for the most gehe;
ral Z{(N) model such dimensiOn.grOWS'lineariy with N, making the

RG soon untractable. An important consequence of these facts is
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that, whereas for the Potts model it is possible to have the re-
sults for arbitrary neal values df'q (and consequently the impor
tant- q-*l and g+ 0 llmits, respectively the bond percolation and
resistor problems, are easily accessible), to obtain for the Z(N)
model results which are analytical in N is a non trivial task.

The main'purpose of this paper is to present results, for ar
bitrary neal values of N, for a particular realization . of the
2 (2N) modei, the so called discrete N-vecton (or N-componéntl mo
def or even cubic modez.. This problem is tractable because, as
we shall see, it presents fhe considerab1éIadvantage of requiring,
in order to remain closed under'renormal;zation, a parameter space
which is, for any N, at most bidimensional. The cubic model has
already been focused within various theoretical frameworks, such
as Mean Field Approximation [9], Niemejer-and van Leeuweniﬂ}[lﬂ]{
Migdal RG [11], variational and dedecoration R3's [12], Mmte Caflo—l:ke ap—
proach ,[13], conformal invariance [14]. and Monte Carlo RG [15]. Possible phx
sical motivations (é;g., ra:g-eérth compounds) are discussed in
Refs. .[9,11,12]. Here we study the cubic model within a RG ap-
proach whichlpreserves appfoPriate.two—spin correlation func-
tions. All the results are exact for the.wheatstoné—bridge hie-
rarchical _lattice;‘they‘.are either exact (é.g., parts. of the phase diagram
for N<2) or approximate (e.g., the critical exponents v and )
for the square lattice.

In Section 2 we introduce the model and the formalism; ih
Section 3 we present the general results. as well as those corre-
sponding to the N+ 0 limit (self-avoiding walk); in Section 4 we
make the éonnédtion between the presént approach'and the phenome

nological RG; finally we conclude .in Section 5.
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2 MODEL AND FORMALISM

The cubic model elementary interaction between spins i and j

is described by the following dimensignless Hamiltonian:
Bxij =-N:<§i.§j (1)

where B; l/kBT and where the Spin §i-at any given site is a N-com
ponent unitary vector which can péint only along the 2N positive
or negative orthogpnal coordinate directions, i.e., §£=tt1JLO,".,0)
or (0,£1,0,...,0) or ...(0,0,0,...,£1). This interaction is a
discrete version of the ciassicalfNQVector;model. In what  fol-

lows we shall consider a generalized form of it, namely given by
. - _ N2 2 '
auf; . = -NK §i.§j N2L (§i.§j) (2)

ﬁhich will prove to be closed under RG.

Hilhorst [10] has'verified that model (1) reproduces, in the
N> 0 limit for L=0, the grand-canonical .statistics of a self-avoiding
walk (SAW) with step fugacity K. This result also holds for mo-
del (2) and extends to.discrete spins the de Gennes' result [16]
for continuous spins; it was in fact .exploited for the early RG
analysis of the SAW mentioned above [10]. For the particular case
N=1, model (2) reduces to the spin 1/2 Ising model for all values
of L. For N=2'we-¥e¢over_the Z2(4) model (see, for example, Ref.
[4] and references therein). .If NL = K, model (2) recovers the
2N-state Potts model with diﬁensionless coupiing constant 2¥K. If
K=0, model (2) recovers the N-state Potts model with dimensionless

coupling constant N°L. For finite K and NL/|K|-Ho we recover,
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for all values of N, the spin 1/2 Ising model with dimensionless
coupling constant NK. Indeed, the second term of Hamiltonian (2)
becomes dominant, and therefore only parallel and antiparallel'
spin configurations' are possible at any finite temperature. To
summarize all these particular situations, let us say, by using
the notation (N ,Ng)-model introduced by Domany and Riedel [11],
that Hamiltonian (2) corresponds to the (N,2)-model.

Hamiltonian (2) is in general associated with a three-level
system. For instance, if we assume K> 0 and L >0, we have a fun
damental level whoselenergy_is -N (K+NL) and.whose degeneracy 1is
Zﬁ; the energy of the first excited level is 0 and its degammaqy.
is 4N(N-1); finally, the energy of the second excited level is
N(K—NL’ and its degeneracy is 2N,

If we consider now a two-rooted graph made by a series array
- of two bonds with.couéling‘constants (K(l),L(ll) and (Kcz),ch))

respectively, its Hamiltonian will be given by |

e (1) ' (1), 2 2 (2)z - (2)
st ,, = Nk P8 E w3187 - 88, - WLt (5.5,
(3)

where §1 and §2 are the terminal spins and §3 the internal one.

For all statistical equilibrium properties which do not directly
involve §3, B]flzs can be replaced by

sily, = -NK(S)§1.§2 - NZL(S)(-§1.§2)2 - K" (4)

where we impose

ey, - -BW
e H12 - Tr e 123 (5)
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with K(s),L(S) and K;'to be determined. The results (except
for K;, which is not important in tha.pﬁawmt caﬂExH ¢an be written

as follows:
(s) _ (1) L(2) -
t =t 00t (ral,z) (6)

where the vectfor the&maﬁ'tnanAmiébiuity (tl,tz) (see [2,4,12]) is

related to (X,L) through the definitions

. _=2RK
£, = - e - (7.a)
142 (n-1) e N (K#NL) | o-28K
and
o ~N(K+NL) = _-2NK
t2 = 1-2e M- (7.b)

For the 2N-state Potts model (K=NL) we have t1=t2, for the N-state
Potts model (K=0) we have t =0,and for the Ising model (ﬁL/|K|+w)
we have t2=1. In all these cases we recover the definition of
thermal transmissivity introduced in [2]. ?or N=2, (tl'tz) re-
produce the vector transmissivity of fhe Z{4) model as defined in
[4]. It is finally worthy to mention that the cubic model -(L=0)

2
L)

corresponds to the équation (N-2)t§-&2t2H=Nt1

Equations (7). yield, through inversion,

EFN(K+NL)'= o1t

l+Nt1+(N—l)t2

(8.a)

and
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1-N t, + (Ne1)t; |
S T e (8.b)
I+N £, + (N-1) t,

_—2NK
e

We note that for N=2 and only then, the functional forms of - the

-N(K+NL)’ efZNKl are one and the same.

-N(K+NL) _-2NK
'e

transformation (t1't2)3 {e

In other.words, if we define (tl,t2)==FN(e }, in ge-

1

neral F, #F‘ but Fz-“ =F This fact will make, as we shall

2.
see further on, the N=2 model to be a special one.

Let us now conslder a parallel (instead of series) array of

two bonds with coupling constants (K(l),L(l)) and . (K(z),L(z)

(p) (p)

}. The

- eqguivalent coupling constants (K }) will be now given by

g®) - g1 g(2) (9.a)

and
L(p) _ L(I)J-LCZJ (9.b)

or equivalently

1

(10.a)

1+Nt§1) t{” + (8-1) t(“ t(Z)

(1) © ,(2) | (1), (2) (1) ££2)
t +t,°7 + Nt t lNZ)t 2.
1) . (2) L1y 2' '

[+
I

These equations can also be written as follows:

(t(p))n . (til))n (t(z))n (r=1,2)
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with

1-N €, + (N=1) ¢ -

1-t,

14N t]: + {(N=1) tz

L
i

" (11.b)

For a fﬁll discussion of this kind of "dual" variables see [17].

Now that we have introduced the variables t, and t, (very con
venient at the oresent time for'repfeséhting the RG flow dia-
-grams, and poséibly-in.future for formulating a Break-collapse me
thod [2,4,17,18}){1et us fdcus the ferromagnetic model in square

lattice. ‘The Hamiltonian will be given by

sdl=- -nk § (S5..8)-wL | (8..8,)2 {12)
<i,j> v <ijj> *t
where the sums run over all pairs of first-neighbouring  sites,

K> 0 and L >-K/N.

‘In a way similar to what happens for the Potts ferromagnet,
the L=0 transition is expected to become first order on a Bravais
lattice for high enough N. Mean field predicts first order for
N>3 [9]. Real space.renormalization group calculations in two
dimensions indicated first order for N>N_=2 [15]. At the pre-
sent moment we will leave out of the discussion the aépects con-
nected with the first order transition, amd focus more on the pe-
culiar features of the phase diagram of hierarchiéal l&Udnes,whrﬂ1
can be obtained exactly without the introduction of vacancies [12].

The hierarchical lattice we consider here in particular 4is that

corresponding to the Wheatstone bridge cluster of Fig. 1. This
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cluster, due to its self-duality, warranties. coincidence of the
critical couplings with those of the infinite square”lattice; in
all cases in which the model becomes self-dual.

To construct our RG we impose

-84 -84
e 12 _ Tr e 1234 (13)

where }‘iz and Jﬂ1234 respectively g;e the.Hamiltonians - associated
with the small and large graphs of Fig. 1 (Jf{é in particular 1is
explicitly written in Eq. (4) with (K',L') substituting K*,1(%))).

Equation (13) yields

R SR |
K' = 2N-£n g, (14)
and
. G,G.
2
G3
with
2 . : - : . 2
_Gl = eSN L(eSNK_'_e 3NK+ 2e NK_) + 2(N-1) [262N L
. S 2 . .
(eZNK + e‘zNK) +eN L (eNK+e-NK)+2N- 4] . {16)
25 . : o 2
G, = 2V L (oMK, o=NK) | a(n-1)f4 2N L
2 . .
+ eV Fel¥, 7K | an g (17)
_ 2 : - 2 : : -
G, = 2{e3N L (30K, 370Ky PSS (ezNK+ 2+e ZNK)

. . 2 _ .
+ (-2) (5e" L™+ e V) L 2n - 63 (18)
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Equations (l4) and (15) provide the RG recurrence relations we
were 100king for. For fixed N, the RG flow in the (K,L) space {(or
equivalently in the (tl,tz) space) will determine the phase ‘dia-
gram as well as the universality classes. The numerical values of
thermal and crossover exponents (v and # respectively) can be ob-
tained through the calculation of themJaéobian_mabﬂx 3(K',L")/3(K,L)
on the various semi-stable or fully unstable fixed points. More
sPecifically,:if we denote Xl and'J\2 the eigenvalues of ﬁhe matrix

we have:

(1) Ai$1.>lz for critical (semi-stable) fixed points, and

VY = H{T (19)

where B is the linear expansion factor (B=2 for Fig. 1).

(ii) 751 >1 and Xz.-‘é 1 for multicritical {fully unstable} fixed points,

_ 4inB _ _ Ay
Vg = In—?c's' (s=1,2) o (20)
and
Lnkz
§ = £n Al (21)

where 12 denotes that eigenvalue which, while varying N, tends to

unity whereas ), remains greater than unity.

1

3 GENERAL RESULTS

The phaée diagrams for typical values of N are presented “in

Figs. 2(a) {(in the (tl,tz) variables) and 2(b) (in the (1/K,NL/K)
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variables). For a given value of N, the phase diagram presents
three phases, namely the paramagnetic (P; characterized by the

fully stable fixed point t =t,=0), the fernomagnetic (F; charac-

1

terized by the fully stable fixed point t =t,=1) and the intex-

1
mediate (I; characterized by the fullf stable'fixed point (t1d§’=
;(0,1)) ones. The existence of thfee distinctlphases is well known
for N=2 (2(4) model). This structure analyticail& remains so for
all values of N, including for N< 1 wheré it should be considered
as a mathematical'artifact.”.Indeed, for N=1 (Ising model), the
P-I critical frontier shoﬁld be considered as a spurious one, since
for this model only two distinct phases exist, namely the ferro-
magnetic phase (F) and the paramagnetic one (P dnd I); as expected,
the physically'neanhmﬁhll critical temperature for N=1, does not
depend on NL/K ("vertical" line in Fig. 2(a), and "horizontal" line
in Fig. 2(h))}.

The critical frontier correSponding to a given value of N con
tains four special points, namely three semi-stable fixed points
(cnitical points) and a fully unstable one (mulificaitical point).
Two of _the three critical pqintis are the Ising.one i (tl,tz-) = (v2-1,1))
and the N-state Potts one ((tl,t2)=(0,l/(/ﬁ5#1)). The.third and
fourth special points are the 2N-state Potts one (t =t,=1/(/ZN+1))
and the extended'cubic_one ((tl,t2)=(ti,t;) where the associated
transmissivities and coupling constants are given in Figs. 3(a) and
3(b) respectively). For N<N*=6.9 the 2N-state Potts model cor-
responds to the multicritical one and the extended cubic model cor-
responds to the critical ohe; the situation is reversed for N>N¥*.
LAt N=N* a speclal multicritical point emerges as the_zuqﬁzmelkmts
and the extended cubic fixed points collapse; at this value of N

the two models exchange stability.
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The thermal critical exponent v, as well as the crossover exX-—
ponent @ are shown in Figs. 4(a) and 4 (b) for the 2N-state Potts
and the extended cubic models respectively. In particular, in
Fig. 4(a) we recover well known values of Vi for the Wheatstone-
bridge hiérarchical lattice Potts model, namely v, =1.43 for the
bénd-percolation model (N=1/2), and vT=-1.15 for the Ising model
(N=1); it is also worthy to mention that @=1 for N=1/2. Also, in
the N+« limi—-t. .we obtain Vo = fn2/&4n5=0.43, in accordance with
the conjecture [19,20] that Vo should give 1/df where df is the
intrinsic fractal dimensionality. Finally, our numerical results
suggest that, in the limit N+ o, the exponents Vi associated with
the 2N-Potts and extended cubic models coincide.

A limit of special interest is the N+ 0 one as it corresponds
to the self-avoiding walk problem (SAW). In the Fig. 3(b) we see
that Kc=(/3-1)/2;30.366 which corresponds to the exact  critical
fugacity for the Wheatstone bridge hierarchical lattice (for the
square lattice we have K, =0.3790 [21]. The corresppnding value for

v, is given by v

T = £n 2/8n (4=V/3) 20.85 (see Fig. 4(b}) to be com-

T
pared with the wvalue 3/4 [21]. In fact, the present RS precisely
recovers {and consequently further 'supports), in the W+ 0 limit,
the "corner rule" [22]. Indeed, tnis rule providestthe RG recur-

sive relation K' = 2K? + 2K?®, whose critical fixed point and thermal

exponent precisely are Kc==(/§-l)/2_and vT=ah12/£n(4-/§).

4 CONNECTION WITH THE PHENOMENOLOGICAL RG APPROACH

As stressed in the previous seétions, the renormalization pro

‘cedure applied in this work [1-4] is exact for a hie-
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rarchical lattice, while it is expected to be a more or less good
approximation for sys£ems on a Bravais lattice. In this section
we intend to better clarify the nature of thig appfoximation by
making explicit the connection between the present approach: and
the pheﬁomenological RG [6] (see.also Ref. [23]}.

To -avoid unnecessary complications, let us focus on the parti
cular case of the d=2 Ising model (N=1). We can omit vector nota.
tions and represent simply by ;=121 the sPin at site i. |

Successive clusters of the Wheatstone—bridge family are re-
ported in Fig. 5 (the b=1 and b=2 clusters are shown in Fig. 1}.
On each of these clusters (with b(b=l) internal spins), the sum-
mation procedure leading to the renormalized coupling constant K'
can be interpreted as the dalculation of an {interface free energy
for blocks of the type indicated in_Fig..G. The spins on the ué-
per and bottom horizontal sides of the block are left out of the
summation. Indeed, if we indi&gte by {S} the configurations of
the internal spins of the cluster (i.e., other than 5, and'sz) we

have:

1 : -Bx(‘[S}-;S »8,)
ol 1528 1 e ST G (22)
{s} S N
where. g is an anppropriate '3pin-independent term. From Eq. (22)

we obtain
1 .
| — [ ] —_ ] . .
K' = K'(K,b) = -z[zn ZH_ Ln_z*____.]. {23)
This means that K' is nothing but the dimensionless excess free

energy produced by fixing the horizontal sides to (+) and (=), com

pared to the case in which both sides are fixed, say, to (+). By
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definition of the (dimensionless) surface tension 0, we thus have
K'(K,b) = (b-1}0(K,b) (24)

where o(K,b) is expected to become independent pf b in the b+ w
limit {(thermodynamic limit).

From finite size scaling [24] we expect, for K K, and b > e,
o(K,b) ®b™1 o (b/E (K)) & 1/E(R,b) (25)

where £_(K) is the correlation length of the infinite system, 9,
is a scaling function with 06(0)£ 0, and £(K,b) is the -correla-
tion length in the finite bleck.

If we now define, as often dome [1,2,7], a renormalized coupling
constanthren corresPGndj.n.g to .a linear rescaling factor:b/b" (b'_< b),

through the following cell to cell recurrence relation

K'(Kren,b*) = K'(K,b) " (26)

it follows, from Eqs. (24) and (25) and for large b and b', that

E(K, /b") = - £K,b) (27)
This is nothing but the definition of renormalized coupling con
stant in a phenomenological approach [6). It is clear that va-
rious choices can be done for the célls to be used. In particu-
lar, the standard choice in the phenomenological.approach is fi-
nite x infinite str}ps, whereas here we are using finite x finite

self-dual clusters. In view of .the nice converdgence of results
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generally obtained with phenomenological renormalization methods,

the preceeding arguments justify the usual strategy of improvement

of the results herein obtained (as well as in similar greatments)

as that of considering cell to cell tranéformations K+X___, like
in Eq. (26), with both b and b' becoming increasingly large (as

uSually_dAne in the phenomenological RG).

Thé above derivation can of course be easily generalized to
‘the case of dimensionality d#2, and to models différent from the
Ising one.

Summarising, we see that the procedure we have used here should
not be interpreted as another type of decimation RG approximation.
' Indeed, although we impose the correla;ion'function to be preserved, .
we do so between the roots of the graphs, which corresponds to im
posing the surface free energy to be preserved in the Bravais .biocks',
whereas in the decimation procedures what is imposed is the pre-
gervation of the correlation function between two sites .of the
Bravais lattice. This makes a substantial difference since the
decimation procedures, unless conveniently handled, bring along
intrinsic difficulties related to the spin rescaling. These dif-
ficulties do not exist in the presént approach.

The present analysis makes clear that the well known limita-
tions of +the Migdal-Kadanoff-like approaches are not due to the
fact that correlation functions are preserved, but rather to the
fact that diamond (or tress) choices for the graphs lead, even for
large clusters, to tdpblogies which are_not_at'all those of the

Bravais lattices which are suposed  to be approached.
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5 CONCLUSION

We have considered the criticality of the discrete N-vector
ferromagnet in planar self—dua1 1atticeé. The approach is a real
space renormalization grOup one which exactly preserves correla-
tion functions between the roots of conveniently chosen two-rooted
gﬁ@hs. The renormalization' leaves invariant not the standard dis
crete N-vector model (cubic model) but a generalized §ersioﬁ . of
it. The results are exact for the associated hierarchical lat-
tices, and good estimates for the square lattice (N < 2). The phase
‘diagram (including multicritical points) associatei with fixed N,
.as well as the thermal and crossover_éxponénts, are calculated.
At a value of N (noted N*} an exchange of stability 'is oﬁserved
between the Potts and cubic models (N*= 6.9 for the Wheatstone-bridege
hierarchical lattice). In the N+ 0 limit we recover the self—a-
voiding walk,.and give support to the "corner rule" since long
used in this problen.

In addition to the above results, we have exhibited the con-
nection between the present (correlation-function.preserving) re-
normalization procedure’ and the phenomendlogical renormalization
grdup. This connection makes.clear that these two commonly used
renormalization procedures share essentially the same advantages
and limitations.

. We acknowledge A.C.N. de Magalhaes and A.M. Chame fof useful
remarks. Two of us (CT énd AS) have henefitted from warm hospita
lity at the Universidade Federal do Rio Grande do Norte (Natal).
AMM and LRé have been partially supported by CNPq and CAPES .Fel—

lowships.
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FIGURES

Iteration associated with the Wheatstone-bridge RG (@
0 respectively denote the internal and terminal sites

of the graph} .

Phase diagram in the (tl,tz) space for typical values
of N: P, F and I respectively denote the paramagnetic,
ferromagnetic and intermediate phases. The arrows in
dicate the RG flow; B and 8 respectively ' indicate
stable and unstable fixed points. The line t,=t, cor
responds to the 2N-state Potts model. . (b) PHE#{HAF
gram in the (1/K, 1+LN/K) space for typical values of

N.

N-dependence of the location of the extended cubic
fixed point: (a) (tl,tzl variables; (b) (K, 1+NL/K)

variables.

N-dependences of the thermal critical exponent Vo and
the crossover exponent f: (a) 2N-state Potts model;

{b) extended cubic model.

b=3 and b=4 generating graphs of the Wheatstone-bridge

family of hierarchical lattices.

b=3 and b=4 blocks of spins respectively correspording

to those of Fig. 5.
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