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Abstract

Two new classes of spatially homogeneous cosmological solu
tions of Einstein-Maxwell equations are obtained by oconsidering
a classof exact perturbations of the static Bertotti-Robinson (BR) model.
The BR scolution is shown to be unstable under these perturba-
tions, being perturbed into exact cosmological solutions with
perfect fluid (equations of state p = Ap, 0 £ X < 1), isotrop

ic/anisotropic expansion and non-null. electric conductivity.

Key-words: Bianchi cosmologies; Kantowski-sachs cosmologies;

Magnetohydrodynamic cosmologies.
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Exact cosmological solutions of Einstein-Maxwell equations
have been extensively ekamined in the literature (Kramer et
al. 1980). Among them the simplest one is the static solution
of Bertotti (1959) and Robinson. {1959}; denoted here by BR,
with parallel electric and magnetic fields and without matter.
It can actually be shown that the BR solution is the only
Einstein-Maxwell field which is homogeneous and has a homo-
geneous non-null Maxwell field (Kramer et al. 1980}). In the
present paper we derive two new classes of exact cosmological
solutions of Einstein-Maxwell equations. They have the BR so-
lution as a limiting configuration and are obtained by exact
perturbations of the BR model. In fact the BR model is shown
to be unstable under these perturbations, being perturbed into
exact isotropic/anisotropic cosmological solutions with per-
fect fluid, electromagnetic fields and non-null. electric con
ductivity.

The Bertotti-Robingon solution considered here is the one
which has tOpology‘R:cR:cSZ. Starting from the BR geometry we
make a class of time-dependent perturbations, to obtain a new
manifold with the same topalogy RxRx‘S"2 and . time-dependent
geometry of Kantowski-Sachs type (Kantowski and Sachs 1966,

Ryan and Shepley 1975) given in local coordinates (t,x,9,¢)by
ds? =dt?2 -A%(t)dx? -B2(t) (462 + 8in?8d¢$?) (1)

The dynamics of the perturbed models are described by Einstein-Max-
well equations* (Hawking and Ellis 1973 , Misner et al. 1970)

*'n'neRianamtensorisdetimdby “{Bllﬁl-RuBVX,andtheRmciten-
sor by Rog = R aAB, which implies that the Einstein constant « is posi-
tive,
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y ’ =0
Fta‘ﬁllY:L (3)
1 _
Ryg = 7 9gpR * A9 g =T g 14)

We take for the matter content of the model a perfect £ldid
with matter-energy density p and pressure p, as measured by the
comoving observers with four-velocity field 3/3t. The total-e-
nergy-momentum tensor is then given by
- (p+D —oq . AL o ghe
Tap = (P +PIv v nPOog + FopFig +7 9557 F ()
The electric four current ja is either zerc or - a pure con-
ducting current satisfying j“ya = 0%, We assume that Ohm's law
is valid in the local Lorentz frames of the comoving abservers.

The perfect fluid is a conducting fluid and we have in covariant

form
.0 FaB

where ¢ is the electric conductivity of the fluid.

From the symmetries ¢of the line element (1) we restrict the
B

Maxwell tensor F*© to have the only non-null component

F%* = - F¥ = E(t) (7)

*The space-like character of ja implies that the density of
electric charge of the fluid is zero.
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In the cases of ¢ = 0 a parallel magnetic field can always be
introduced by a dual rotation of the Maxwell tensor (Misner
and Wheeler 1957). |

For (1) and (7), Maxwell's equations (2)~(3) yield
¢ = - 2 fn(EB?) (8)
dt

and Einstein's eguations reduce to the set of independent e-

quations (cf. Appendix)

2Kp==R°0 - 3311 + KB2 & 24 (9a)
- p% LR} _ 2 _ 4
2kp = R o tR"y —KE 2A (9b)
2 1 2 _ .
R?, -RY; + KE* = 0 (10)

Equation (8) is taken as the definition of the electric con-
ductivity, and equations (%a,b) define p and p respectively.
For all the solutions discussed here we impose the .equation

of state

P = Ap ’ Uf_lil (11)

We distinguish the following cases:

I) The Berttoti-Robinson Universe

A% =B2 =12, where A? is a constant. We obtain from (8)=(10)

KE® = = , 24 = - = (12)

with p = p = 0 and o = 0.
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II) Exact isotropic perturbations of the BR universe

We take A(t) = B(t). Equations (9)-(10) result

KE? = L
BZ
Kp = 3(B) A
za2
Kg = - A
(B) 2B2
The equation of state (ll) implies the differential equation.
for B(t),
'%‘ 3?\-1-1; (B) L J14A) O (1+A}A 0 (13)
4B2 2
3A+1
Ny u z '
Introducing the new variable t defined by dt =B dt, e-

quation (13) can be expressed as

gr o AL+A) pad o (eMA padez _ o (14)

where a prime denotes %-derivative. It is easy to chedk'that
t is a monotonic function of t. Equation (14) has the first

integral
(B')® + V(B) = C (15)

where C is an integration constant and

1+A A+l A 3243

V(B) = s B +=B (16)
2{1+3)0)

[
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For this class of solutions we calculate

3C 1l
Kp = =3 - (17)
.33l+3 (3A+1)B2'

The dynamics and properties of the model are completely des
cribed by equations (15) and (16), and depend critically on
the sign of A. We consider here the case A < 0 only. The behayv
iour of V(B) is depicted in Fig. 1. Since B=0 is the physical
singularity of the model {(cf. expression {17)) we plot  the
physical relevant part of V(B) only. The maximum of the potential

Vv(B) occurs at
gcﬂ/:%_ﬁ (18)

where V(B) takes -the value

. 3A+1
_ 1 ( 1 )“‘i“
Vmax = 3(3xeD) \TZA | (19)
ViB) &
Fegion of
[ I
! =0
‘,/9
€ Voax !
I
[ 4
Cm ¥ e — e
RaX

—

Fig. l: Graph of the qualitative behaviour of V{B) given in Egs.(16)

and (24). The curve p(C,B)} = 0 is also depicrzed.



CBPF-NF-017/85

We also ‘draw in Fig. 1 the curve p = 0, p being considered
as a function of B and C. We call attention to the remarkable
fact that for C = Vhéx, p is equal to zero at B = Bc'

The following physical situation are possible (cf. Fig. 1):
I1i) C--='V“‘lax
For this case the dynamical system (14) admits the point (B =
B, B = 0) as a critical unstable point. This point corresponds
to the static configuration with density p, pressure_b and con
ductivity ¢ equal tc zero, whith is the Berttoti-Robinson solu
tion with topology Rx R x 52,
IIii) From Fig. 1 ﬁe easily see that this solution is unstable
under perturbations involving the electric field, the density
p and the conductivity ¢. By perturbations of C = V into

max
C =YV - £2 we are led from the Berttoti-Robinson solution

max
to ;mWéical sblutions.of'EinsteinrMaxwell equations contracting isotropical
ly £rom the radius B, (solution of V(BO) = C>{0) towards the
point-like singularity B = 0. These solutions have a pure elec
tric field, and positive conductivity ¢ as can be caleulated
from (8). The density p is positive always.

At this point the meaning of exact perturbations and ims-
tability of the BR solution becomes clear. Consider for instance
the perturbation C = Vpax > € = Vpax ~ e2, €? infinitesimal. The
critical point of the system P,= (B=3B_, B = 0) -which corresponds
to the static BR configuration - is perturbed to a point PE =
(B = B, + O(e), B = 0) infinitesimally close to P_. The point
P_ is now taken as the initial conditions of the perturbed gra

vitational system. The time development of the system as given

by (14) with the prescribed initial conditions will depart largely
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from the unperturbed configuration P, This trajectory corre-
sponds - to an exact solution of Einstein-Maxwell equations.

We exclude the cases C > v ., because the values, of B

3i+1

must be restricted by B < BM' where B, = (3C(A+1)) is the

M
value of B where p = 0. Since beyond By the density p would
become negative these expanding solutions are not  physically

satisfactory.

For .the above cases 0 < C 5 V

max’ equation (15) can be in-

tegrated in terms of analytic functions. The general solution

has the expression

g - to—é I - 2
” C-V(B)
Y n
For x =0, 1/3, 2/3, 1 the solutions (t-—to] are given by Jaco
bian elliptic functions (Abramowitz et al. 1965). In the gemeral casethe
solutions are given by hypergeometric functions (Erdelyi et al.1953).
The detailed expressions will be published elsewhere.
We finally remark that although these models have an iso

tropic expansibh the presence of slectric fields implies that
the spatial sections t = const. have a privileged direction

locally defined by 3/9%.

IIT) Exact anisotropic perturbations of the BR universe

We consider A? = A?, where A? is a constant. Equations’(9)-

{10) result then

B B\2 1
@ _ = —_ —
«e* = 2 +(B) . - (20)
B
K = = g5 + % E? + A (21la)
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B K '
Kp:-E—"j‘Ez-h {21b)

Imcosing the eq_ratlom of state (11) and introducing the variablen defined
C g

by d@n = B >~* dt, we obtain the differential equation for Blt),

3i-1 5+

3~ 3-A

1+3

-

B" + B =0 (22)

where a prime denotes n~derivative. Equation (22) has the first

integral
Liney? : |
where
. 2{A+]l) 8
V(B) = .]2; g 3-r 2A(81+k) pI-X (24)

For this class of solutions we calculate from (20) and (2la)

-8
_ 4C 37X
Kp = ﬁ B + A (25)
and
=8
KE? = L;f_zﬂce?"‘ —(1+N) A (26)

We see from equation (26) that for A = 1 we must have A < 0,
For all other cases we restrict ourselves to A < 0 in order to have
KE? positive definite.

The graph of V(B) and of the curve p = 0 (p being considered

as a function of B and C) are qualitatively the same as in case II.
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' The maximum of the potential V{(B) oc rs at B, = Vr;%; where
V(B) has the value Via '§— ( ZA) . Also for this case
we note that for C = Vmax' p is equal to zero at B = Bc.

Analogously we have the following physical situations:
ITTi) C = vﬁax

The point (B = B, B = 0) is a solution of  (22)
and corresponds to the Berttoti-Robinson static solution, with
density.p, pressure p and cohductivity c equél to zero. From
the graph of Fig. 1 we can see that this configuration is uns
table.
IITii) By perturbation of C = Vv into C = Viax ~ e? we are
led from the Bertotti-Robinson solutions into physical solu-
tions of Einstein-Maxwell equationé contracting anisotropically
towérds the singularity B = 0. These solutions also have a
pure electric field and positive conductivity o as can be
calculated from (8). The density p is positive always and goes
to infinity as B goes to zero, The singularity B = 0 has the
structure of a infinite line, up to identification of points.

We must finally comment about the sign of the conductivity
¢. From equation (8) we obtain by a straightforward calcula
tion that the sign of o is opposite to the sign of expansion
parameter &, of the four velocity field of matter 3/3t. For
both classes (II) and (III) presented here o 1s positive in
the contracting phase of the model. There is however a bold distinction
hetween solutions (II) and (IIT) concerning the interpretation of g. For

a closed system in flat space-time it can be shown {Landau

and Lifshitz 19603) that o must be positive in order that the
entropy of the system increases. In the curved space-time of

a cosmological model the concept of entropy of a closed sys-
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tem is not in general well defined. If we adhere to the orthodox
principle that _locally the entropy of any system must increase
and assume that the sign of the conductivity o is related to
the local rate of change of entropy, then ¢ must be greater than
zZzero. For the anisotropic models (IIX) discussed here this view
can actually be sustained by local thermodynamics considera-
tions: from the local cohservation of TV’ we can derive(Ellis 1971)
that the €time derivative of the specific entropy is given by
o =7 i where ﬁuv is the traceless anisotropic pressuré tensor

e
and Oy is the shear of the matter velocity field 3/5t, and a
simple calculation i‘esults'cp 2 - -25 E? (%) Using expressions (8)
and (26) we show immediately that the sign of o is equal tothe
sign of ¢.

For the isotropic solutions (II} however Upv = 0. We have
obviously ¢ = 0 and the above interpretation fails. ‘It then
remains to be given a physical criterion for defining the sign
of ¢ if the concept of increasing entropy {even from a local point
of view) has any meaning at all for a macroscopic system in

interaction with the cosmological background.
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Appendix
For the metric (1) the Ricci tensor RY v has non-null components

x B
0 _ e = A Py
Ro- A 2B

R, =-xX- 2%
R® = R7, B~ 3B *B)



CBPF-NF-017/85

=12~

References

Abramowitz, M. and Stegun, I.A. Eds. - Handbook of Mathematical

Furictions, Dover, New York (1965).

Bertotti, B. - Phys. Rev. 116, 1331 (1959).

Ellis, G.F.R. — Relativistic Cosmology, in Rendiconti Della Scuola

. Internazionale di Fisica "Enrico Fermi"’XLVII Corso, (1971).
Erdélyi, A, Magnus; W, Oberhettinger, F. and Tricomi, F.G,Eds -
—-;—Higher Transcendental Functions, Mc<Graw Hill, New York (1953).
Hawking, S.,W. and Ellis, G.F.R. - The Large Scale Structure of
——Space Time, Cambridge University Press, Cambridge (1973).
Kantowski, R. and Sachs, R.K. -~ J. Math. Phys. 7, 443 (1966).
Kramer, D.; Stephani, H.; MacCallum, M. and Herlt, E. - Exact
——=S8olutions of Einstein's Field Equations, Cambridge Mono-
—graphs on Mathematical Physics, Cambridge (1980).

Landau, L. and and Lifshitz, E.M, - Electrodynamics of conti-

nuous Media, Addison-Wesley, New York (1960).

Misner, C.W.; Thorne, K,S. and Wheeler, J.A. -~ Gravitation,

Freeman, New York {(1970).
Misner, C.W. and Wheeler, J.A, - Ann. Phys. 2, 252 (1957).

Robinson, I. - Bull, Acad. Pol. Sci. wvol. III, 351 (1959).



