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ABSTRACT

We have investigated the dynamic behaviour of some extensions of the alternating
access model for membrane active transport. We have used the stoichiometric network
analysis to study the stability of steady states. The bifurcation analysis has been done
through standard numerical methods.

For the usual six-state model we have proved that there is only one steady state,
which is globally assymptotically stable. When we added an autocatalitic step we found
self-oscillations. For the competition between a monomer cycle and a dimer cycle along
with dynamical dimer formation we have also found self-oscillations. We have also
studied models involving complexes formation with other molecules. The addition of
two steps of complex formation does not alter the number and the stability of the basic
six-state model. The model with addition of two steps of complex formation along with
a autocatalitic step shows both self-oscillations and multiple steady states.

Key-words: Membrane active transport; Dissipative structures; Stoichiometric
network analysis; Oscillations and multiple steady states.
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1. Introd_uction

The active transport in membranes is an essential feature of living cells. It is responsible
for energy storage and for the regulation of ions concentration levels. Active transport
is possibly the most important path to self-regulation and self-control in living cells.

For ATP driven systems there is a model showing the essential features of general
systems ' . It is known as the alternating access model and it is used both for theoretical
and experimental studies 112

The models of active transport systems can be seen as chemical reaction networks.
Their dynamics are given by a set of differential equations. In the present paper we
intend to study the dynamics of some active transport models. We will propose some
models showing complex behaviour such as oscillations and multiple steady states. This
kind of behaviour can be linked to selfregulation and control of the cells.

We have used a standard six-state alternating model as a basis to study some ef-
fects of autocatalysis and of complexes formations. We will also study some of the
effects caused by the introduction of a competing dimer transportation cycle along with
dynamical dimer formations.

We have applied some of the methods which have been proposed for the analysis
of complex reaction networks. The zero deficiency theorem 3% and the deficiency one
theorem © give strong results about very complex networks.

Some properties of the differential equations associated with usual chemical networks
have been shown by Willamowski 7. Among other things, he proved that usual chemical
networks have an odd number of hyperbolic steady states. '

Our main tool will be Clarke’s stoichiometric network analysis, which deals mainly
with steady-states stability #°, We will apply stoichiometric network analysis to iden-
tify the elements responsible for oscillatory or multiple steady-state behaviour. The
bifurcation analysis will be carried out through standard numerical methods 1011

2 Theoretical framework

In this section we will present some results taken from literature as well as establish
some essential notation.

The objects that jappea.r before and after each reaction are called complexes  and
we will reserve the symbol y to denote the number of distinct complexes in a reaction
network.

As usual, by reversible network is meant one in which each reaction is accompanied
by its reverse. Some important results may be proven for networks satisfying the less
restrictive condition of weak reversibility. A network is weakly reversible if, whenever
there is a directed arrow pathway pointing from one complex to another, there is also a
directed arrow pointing from the second complex back to the first 3.
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A reaction network may be displayed in a standard form diagram, in which each
complex is written just once and then arrows are drawn indicating all reactions among
the complexes. The connected pieces of such a diagram are called the linkage classes of
the network *. The symbol ! will indicate the number of linkage classes of the network.

For a reaction network that has r one-way chemical reactions R;,...,R;, involving
n species zy,...,T,, one defines a n X r matrix Q called the stoichiometric matrix,
whose elements Q;; are equal to the stoichiometric coefficient of z; on the right-hand
side of reaction R; minus that on the left 8.

K x = (21,...,2,)7 (simbol T denotes a transposition operation) is a vector of
concentration, x = dx/dt and v = (v,...,v.)7 is a vector of one-way reaction rates,
then the kinetic equations take the form 2

x=Quv 1)

Assuming the usual mass action kinetics, then the expression for the vector v will

be
v = (diag k).xY _ (2)

where k is a vector of the rate constants of the r reactions and diagk isa r xr

diagonal matrix with elements of k along its diagonal. By xY
component vector with a jth element defined as

it 1s meant an r

xY); = H:c s (3)

where the symbol Y denotes the n x r kinetic matrix, whose element Y;; is the order
of z; in reaction R;. The components of v are always nonnegative and belong to the
reaction space IR",

If the stoichiometric matrix Q is of rank s, it is possible to choose s-linearly-
independent columns of Q, which will span a subspace of the species space IR® called
the stoichiometric subspace denoted by S ©. As a subspace of IR" S will contain the
origin. The “parallel” of § containing c, denoted by ¢ + S, is obtained by addnng the
vector ¢ € IR® to all vectors of S, For each ¢ the intersection of ¢ + S with R, +» the
nonnegative orthant of R™, is called a stoichiometric compatibility class ©. It has been
shown that, given the initial conditions of the system, the dynamics of a network is
restricted to a unique stoichiometric compatibility class 7.

The deficiency of a network denoted by é is given by the formula

d=y—1Il—s (4)
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The steady states of the system are the first important element in the study of
dynamical systems. Given a system x = f(x), the steady states are the points for
which f(x) = 0. The linear equation associated to small perturbations around the
steady state x° is given by

€ = Df(x°).€ (5)

where £ = x — x° and Df(x°) is the Jacobian matrix of f at x°.

A steady state is hyperbolic if the eigenvalues of the Jacobian of f at the steady
state have no zero real part. A theorem by Hartman and Grobman % states that in
the neighborhood of a hyperbolic point a nonlinear system is equivalent to the linear
system given by the Jacobian at that point. It has been shown that systems having
only hyperbolic steady states will not lose this property by “small perturbations” 12,
On the other hand, the non-hyperbolic points will necessarily appear in the study of
bifurcation points.

A hyperbolic steady state is assymptotically stable if all eigenvalues of the lineariza-
tion matrix have negative real parts; otherwise, it will be unstable.

The structure of the differential equations associated to chemical systems has enabled
Horn, Feinberg and Jackson 2~® to prove the so-called deficiency zero theorem, from
which we will need the following simplified version:

Deficiency zero theorem : If a reaction network of deficiency zero with mass
action kinetics is weakly reversible, regardless of the positive values the rate constants
take, the associated system of differential equations will have only one steady state
within each stoichiometric compatibility class. That steady state is assymptotically
stable.

In spite of its power, the deficiency zero theorem does not apply to a large number
of chemical systems.

Willamowski 7 showed that in the case of weakly reversible second order mass action
kinetic systems, which are the usual ones, the systems will have at least one unstable
steady state every time they have multiple steady states. As oscillations are assumed
to be associated with Hopf bifurcations, which also implies unstable steady states, we
may concentrate on the study of the stability of hyperbolic steady states.

Clarke #° has developed a method, called by him stoichiometric network analysis,
that allows the study of the stability of steady states in complex reaction networks.

Let x° be a steady state of the network and let v° = v*(x° k). From equation 1
v° will satisfy

Qv =0 (6)

Then all solutions v° must lie in a (r — s)-dimensional subspace P C IRF, which
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is the right nullspace of Q. Since all components of v® are nonnegative, v° must be
in the intersection of P and IR}. This intersection is a convex polyhedral cone called
the current cone. Let there be f cone vectors supporting the frame of the cone with
directions given by e!,...,e’, called extreme currents. Then every v° in the current
cone can be expressed as a nonnegative linear combination of these e'’s

f )
ve = EJ‘ e (7)
=1 .
or in a matrix form
vi=E]j ' (8)

where the r x f current matrix E has the vector e as its ith column and j € RL
is a vector whose components give the “weight” of each extreme current in the steady
state.

It is worth noting that each extreme current is itself a chemical network, and the
chemical diagram of each extreme current gives a good picture of their physical meaning.

Clarke has shown ® that a zero deficiency extreme current is mixing assymptotically
stable. Every combination of mixing assymptotically stable extreme currents have only
one assymptotically stable steady state, and every combination of mixing stable extreme
currents have only one stable steady state,

For each extreme current there is a purely numerical matrix, given by stoichiometric
coeficients, current directions and the order of reactions_
SY = ~Q.(diage’). YT (9)
and we can also define a symmetrical matrix
SH).,. = (1/2)(SVT 4 sy (10)
Clarke has shown ¥ that if all eigenvalues of S{’} have nonnegative real part, then

sym
the ith current is mixing stable.

A second parameter is h € IR} defined by
h=1/x=(1/,...,1/a3) (1)

The linearization matrix can be written with the new parameters as
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M = Q.(diag E.j). Y .(diagh) | (12)

To see whether a (numerical or algebraic) matrix has only negative real part eigen-
values Routh—-Hurwitz’s necessary and sufficient criterion is applied to the characteristic
polynomial associated to the linearization matrix ®. In some cases it is possible to apply
a result from Daoyi 4. It gives a sufficient condition for a matrix to have only negative
real part eigenvalues. This result is specially useful when the off-diagonal elements of
matrix M have a definite sign.

Clarke has also demonstrated !'* a theorem on the stability of topologically similar
networks. Suppose that a network has a reaction A + B — C + D. If another network
has the same reactions, but with A+ B — E — C + D, then the latter is called an
extension of the former. Clarke showed that if a network is unstable then its extensions
will also be unstable.

The great advantage of this new method is that it is Bosssible now to study the
stability of all steady states without calculating them, by means of the new independent
parameters h and j.

3 The models

A) Model 1

We start with a simple model containing some of the essential features of active
transport systems. These steps will be present in all next models. It is an usual
alternating access model and it is composed by six states '.

The model is shown in Fig. 1 where the carrier states are represented by A, B, C,
D, E and F. The reaction network for the model is the following :

A+X ;.*_é B I
B + ATP f_é C+ ADP I
C % D I

D f-: E + X" v

E f F+P; v

F f_—"; A VI

where X’ is the ligand in the external medium and X" is the ligand in the internal
medium.
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The main assumptions for the model are :

i) The binding sites are accessible only from one side of the membrane.

ii) Phosphorylation-dephosphorilation reactions and conformational transi-
tions are treated as elementary steps.

iii) Each pump transports only one ion per cycle.

iv) We will not assume the usual simplification of equilibrium between the
empty and the full states 1.

v} The ligand concentration and the concentrations of ATP, ADP and P;
(adenosine tri- and di-phosphate and inorganic phosphate, respectively) are
considered as externally controlled parameters.

With minor changes the model could be adapted to be applied to cotransport sys-
tems. Hypotesis iii) would not be necessary. To adapt the model to the transport
of more than one ion per cycle we should consider that the binding sites will always
be either completely empty or completely full. We may assume that the pumps will be
phosphorilated either only by ATP or by direct reaction with inorganic phosphate. In
fact, the concentrations of ATP, ADP, P; and X could be included in the effective rate
constants.

It should be noted that in this model each one of the six elementary steps is in reality
complex reactions containing other elementary steps.

This model has been applied in different theoretical studies, e.g., thermodynamical
aspects and the dependence of the pump on membrane voltage of proton ! and Na, K
pumps ®. Similar models have also been applied to the analysis of experimental results
of Ca’*-ATPase 2.

B) Model 2

We start with model 1 and add one more reversible reaction to it :

A+F 2 24 VIl

koy

This extra autocatalytic reaction is introduced to simulate dynamic cooperativity in
membrane active transport. It is known that membranes of specialized cells of multi-
cellular organisms and subcellular compartments of all eukaryotic cells have a restricted
nurnber of different proteins and usually a high concentration of each type, making easy
the interaction among them 7~19. Some effects of this autocatalitic pathway in active
transport have already been discussed in literature 19,

Furthermore, this model provides a mathematical basis for the analysis of the next
models, which are more complex than the present one.
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C) Model 3

In this model we assume the existence of two different cycles. The first one is
identical to model 1. The second one is a cycle in which the pump unities are dimers
instead of monomers.

It is known that dimer and more generally oligomers may be the functional unities
for active transport, and the possibility of competition between monomer and dimer
transport cannot be discarded ?°.

We will consider an additional cycle with eight steps. The dimer states will be
denoted by AA, AB, BB, CC, DD, DE, EE and FF. The reactions are :

»r
-

AB VII

AA+X *—‘
-7
AB + X' ;——3 BB VII
-8
BB + 2ATP : CC + 2ADP IX
*_lq X
CC S DD\ X
DD ;ﬂ— DE + X” XI
w]l
DE 2 EE+X” XII
";n
EE ;—‘i FF + 2P; XIII
—13
FF & AA XIv

k14

Again, as ATP, ADP and P; concentrations are constants. They will be included
in the effective rate constants.

We also introduce two more reactions to accomplish the formation of dimer com-
plexes, considering it as a dynamic process :

E+E *f—‘i EE XV
-lf

D+E fﬁ DE XVI
—18

D) Model 4

Next, we will consider the formation of protein complexes involving other molecules,
e.g. calmodulin ?°. The phenomenon may be responsible for important changes in the
ion flux 2,

We start with model 1 and add two reactions to it, representing the external molecule
by W and the complex pump-molecule by Z :
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A+W 2 2 viI
F+W = 7 VIII

-8

E) Model 5

In this model we will join the assumptions of models 2 and 4, i.e., one autocatalitic
and two complex formation reversible reactions.

L

C+D &£ 2D VII
A+W 2 32 VIII
F+W 2 Z Ix

A similar simpler model has been able to show multiple steady states 1°.

A concise form of the five models appears in Figure 2.

4 Results

A) Model 1

It is well known that model 1 presents one steady state, which is assymptotically
stable. By applying the deficiency zero theorem we may prove in an elegant way that
there is only one steady state, which is globally assymptotically stable. Only models
with additional reactions may show complex behaviour such as oscillations and multiple
steady states.

The other models do not satisfy the conditions of deficiency zero theorem . Recently
Feinberg ?? proposed the so-called deficiency one algorithm, which gives the necessary
and sufficient conditions to the existence of multiple steady states for some types of
reaction networks. Unfortunately this algorithm does not apply to networks with cycles,
which is the class of our models.

B) Model 2

The system of differential equations for model 2 is
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= —k.A+k B+keF —k_gA+krAF —Fk_g.A?
ky.A—k_1.B—kyB+k_5.C

ke.B—k_3.C —k3.C+k_3.D

k3.C —k_3.D—kyD+k_4.FE

ky.D - k_4.E - ks.E + k5. F

ks.E —k_s.F—keF+k_gA—ki.AF+k_g A’
A+B+(C+D+E+F

Mty b O O e s
i

It has two equations with degree two and the other equations with degree one. As
we have the conservation of the total number of pumps we can eliminate one linearly
dependent equation. If we eliminate one equation with degree two, the system will have
only one equation with degree two and the other with degree one.

The maximum number of steady states for a system of equations may be obtained
from the Bezout’s theorem 2. A useful version of this theorem says that given a system
of m algebraic equations with degrees ¢,. .., g, the maximum number of solutions for
the system is [[;Z; ;. '

Applying Bezout’s theorem to the system of equations for model 2 we will see that
this model will show two steady states at most. As Willamowski has shown 7 weakly
reversible chemical systems with mass action kinetics of order two at most have always
an odd number of hyperbolic steady states. Thus, model 2 has (for almost every set of
rate constants) only one steady state.

Now we will apply the stoichiometric network analysis to study the stability of the
model 2 steady state. The extreme current matrix E 1s

(1 000000001010\
1000000090101
0100000001010
0100000000101
0 0100000010180
0010000000101
00010006001010
0001000000101
0000100001010
0000100000101
0000010011000
0000010100100
0 0000011000180

\0 0000061010001/

These currents may be represented by current diagrams. In these diagrams the
number of barbs and feathers represent the stoichiometry of produced and consumed
species respectively. The current diagrams for model 2 are shown in Fig. 3.
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The rate constants are parametrized by
kh = afc1+cio+ca3) koy = bfer+en+ es)
ky = bfca+ cro+ c12) ks = eleg+en+ )
ks = c¢fca+ cro+ c1a) k_s = dfea+en+as)
ky = dfcg+cro+cra) koy = efeat e +eys)
ks = e(cs+cro+cr2) kes = fues4en+es)
ke = f{co+ cs+ cr0) k_e = a.(cg+cs+en)
kz = a.f.cr+es+ crz) kr = a(cr+co+er3)

where j = (¢y,...,613) and h = (a,b,¢,d,e, f) are the stoichiometric network analysis
parameters.

The currents 1 to 7, 10 and 11 are deficiency zero networks; therefore, they are
mixing assympftotically stable. Using Routh-Hurwitz's criterion it may be shown that
currents 8, 9 and 13 are assymptotically stable. We can show that current 12 will be
unstable for a convenient choice of parameters. As the network has only one steady
state, an unstable steady state will probably come from a Hopf bifurcation 7.

The bifurcation analysis can be done through established numerical methods %1%,
Table 1 displays the parameters used for model 2. Fig. 4 presents the results of the
numerical analysis and shows the locus of a two parameter Hopf bifurcation in
model 2.

C) Model 3

Model 3 has many currents which are equivalent to that in model 2, and most of
them are also stable. Some typical current diagrams for model 3 are shown in Fig. 5.

As we can see, the current 21 in model 3 is equivalent to an extension of current 12
in model 2, with D and E playing the part of F and A respectively. As the latter is a
current which can produce instability, by the theorems of topologically similar networks
15 one can infer that current 21 in model 3 can also produce instability.

From Bezout’s theorem and Willamowski’s results the maximum number of steady
states for model 3 is 7. The instability in this case could come either from a multi-
ple steady-state bifurcation or a Hopf bifurcation. We have found a Hopf bifurcation
associated with the instability produced by current 21.

Table 2 displays the parameters used for model 3. Fig. 6 shows a two- parameter
Hopf bifurcation diagrams of model 3 with different values of k; .

D) Model ¢

To study model 4 we will add a reversible reaction 0 = A, where O represents
a pump reservoir. Then we will apply stoichiometric network analysis to calculate the

linearization matrix M for the network. In this case we can apply Daoyi result 4 to
show that matrix M will have only negative real part eigenvalues.

If the rate constants of reaction 0 = A vanish, we can show that the linearization
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matrices of the original and the extended models can be made as close as desired. The
consequence i1s that the eigenvalues of the two models can also be made as close as
desired !3. As extended model eigenvalues always have negative real parts, the eigen-
values for model 4 linearization matrix cannot have positive real parts. So model 4 will
have only one assymptotically stable hyperbolic steady state.

E)} Model 5
The most important currents in model 5 are shown in Fig. 7.

Current 16 is equivalent to current 12 in model 2; therefore, model 5 will also possibly
have Hopf bifurcations and limit cycles. We can show that current 20 is another current

that can be unstable. We found multiple steady states when current 20 has a significant
“weight”.

Table 3 displays the parameters used for model 5. Fig. 8 shows a two parameter
bifurcation diagram for multiple steady states of model 5.

5 Discussion

The stoichiometric network analysis used in this paper enables steady-state studies of
large and complex chemical networks, which would be rather difficult to do analitically
without this method. It also gives the possibility of identifying the basic elements for
instability through extreme currents and the theorem on the stability of topologically
similar networks.

After the identification of unstable regions and after the choice of the initial rate
constants set {which could be done in comparison with experimental results), the nu-
merical analysis seems to be the only way to carry out bifurcation analysis on such large
systems. On the other hand, numerical analysis cannot supply a complete understand-
ing of the system. Indeed the possibility of multiple steady states in model 3 and of
chaos in models 2, 3 and 5 cannot be discarded.

The theorem on the stability of topologically similar networks enables us to see
that additional paths in the basic six-states alternating access model would not avoid
instability. That means, complex behaviour will still be present if we add more steps to
the model in order to accomplish a more detailed biochemical model.

A model for active transport which shows multiple steady states has already ap-
peared and the relationship between multiple steady states and biological control has
already been discussed in literature 1®*. On the other hand, model 5 is more complete,
including the main characteristics of active transport systems. The stability of the
steady state of model 4 shows the important role of the autocatalytic reaction in chem-
ical systems with complex behaviour. Nevertheless, it is not the only way to produce

this kind of behaviour.

Self-oscillations are common in literature ?* and their relevance in biological systems
is well known. Indeed, recently oscillations of Ca?* in Physarum plasmodium have
~ been found experimentally ?*? and it has been sugested that these oscillations could
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be linked to active transport in mitochondria. Anyway, as far as we know, a theoretical
model with self-oscillations related to active transport in membranes has never appeared.

We would like to stress the fact that in model 3 the assumptions of active transport
through either a monomer or a dimer cycle and of the dynamical dimer formation seem
to be in complete accordance with experimental knowledge. The usefulness of this
path for the creation of biological rythms depends, among other things, on the physical
accessibility of a proper rate constants set.
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FIGURE CAPTIONS

Figure 1. Six-states alternating access model scheme for ATP-driven pumps. During
thecycle A—» B— C — D — E — F — A one ligand molecule is translocated from
the external to the internal medium.

Figure 2. Chemical networks representing the five models studied in the present paper.
Figure 3. Representation of the 13 extreme currents of model 2.

Figure 4. Locus of Hopf bifurcation points for model 2 in the (k_;, %) plane . The
remaining rate constants are given in Table 1.

Figure 5. Representation of some of the extreme currents found in model 3. (see text)

Figure 6. Locus of Hopf bifurcation points for model 3 in the (k_g,%;) plane for
different values of rate constant k; (given in the figure). The remaining rate constants
are given in Table 2.

Figure 7. Representation of two important model 5 extreme currents. (see text)

Figure 8. Locus of the bifurcation that gives rise to multiple steady-states for model 5
in the (%k_3,k3) plane. The numbers inside the figure represent the multiplicity of
steady-states.
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parameter value parameter value

ko 1000 k_z 0.003
ks 1000 k_s 0.003
ky 1000 k_y 0.003
ks 1000 k_s 0.00003
ks 0.00003 k_¢ 1.5
ke 5000 k_7 - 750
T 104

Table 1 : Parameters for model 2. The k,’s are the rate constants and T is the total
pump concentration.

parameter  value  parameter  value
k_y 0.00007

ka 3 k-3 0.000007
k4 - 0.000007 k_4 0.018
ks 881 k_s 0.00006
ke 3 k¢ 0.00085
ky 0.001 k_7 0.0001
ks 0.001 k_s 0.0001
ks 0.001 k_o 0.0001
k1o 0.001 k_10 0.0001
ky1 0.001 k_11 0.0001
k12 546 k12 0.0003
k1a 0.0014 k_is 0.0001
kiq 0.001 k_14 0.0001
ks 0.003 k_15 709
k16 5.8 k_16 0.0001
T 200

Table 2 :Parameters for model 3. The k;’s are the rate constants and T is equal to
the total monomer concentration plus twice the total dimer concentration.
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parameter value parameter value

ky 40 k_y 4

ks 8.3 k_y 0.065
ks 188 - k4 6.16
ks 10.6 k_s 12

ke $.00002 k_s 12

k7 0.3 k_r 0.00007
ks 30 k_g 0.000006
ko 3.8 k_g 0.00004
T 68 P 2.5

Table 3 : Parameters for model 5. The k;’s are the rate consfa.nts, T is the total

pump concentration plus complex Z concentration, and P is equal to complex Z plus
molecule W concentrations.
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