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Abstract
We discuss some relevant properties within the framework of a
recently proposed generalized Boltzmann~-Gibbs statistics. We then
apply this formalism to calculate the thermal dependence of the
specific heat associated with a free particle (cn=Ana+B: A>0). In
addition to that, we calculate the classical limit for a larger

family of systems (cn=An“+B; A, r>0).

Key-words: generalized statistical mechanics; free particle;

specific heat; generalized thermodynamics.
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4 INTRODUCTION AND GENERAL CONSIDERATIONS,

In a recent paperm, one of us proposed a possible
generalization of the Boltzmann-Gibbs statistics. This extension
was based on the following expression for the entropy: _

1-§p: (1)
q g1
where n runs over all possible microstates of the system, {pn) are
the associated probabilities and q is any real number which labels
different statistics; the g-+1 limit yields the standard Shannon
entropy Sl=—k):npnln(pn). The entropy given by Eq.(l) is related
with the Renyi entropylz]given by

(2)

q
- Ingge))
S‘I = k -——q_l
as follows:
(3)
1n[1+(1—q)sq/k]
R - —
S‘l /K= 1-q

Like Sq, Sq“ recovers the Shannon entropy in the g+1 1limit. We

[3]

immediately verify that Sq“ is a monotonic function of S‘l for

all values of g. Nevertheless, their concavities might be
different (this is illustrated in Fig.1 for a binary variable,
i.e, total number of microstates equal 2). As it will become
transparent later on, the concavity under discussion is relevant
for the sign of the specific heat, for arbjtrary values of q.

In order to obtain the equjlibrium distribution, the standard
variational procedure has been adopted in Ref.[1] by using s‘1 and

by assuming the (generalized) internal energy anncn, where {cn}
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is the "spectrum" of the system. Conseguently, the canonical
1l

distribution at temperature T=l/kf is given by p «
-“{1-B(q-1)£njhﬂ'd’. If we assume instead that the generalized
_internal energy is given“” by
- q
UL p e, (4)
the canonical distribution will be given by
1/(1-q)
[1-B(1-@)¢ )
p =
n z, (5)
with
1/(1-q)
z =L [1-8(1-g)e ] . (6)
n

This distribution is represented in Fig.2 for typical values of q.

We verify that distribution given by Egq.(5) coincides, through
transformation 1-geg-1l, with that associated with the internal
energy Enpncn .

Furthermore Curado and Tsallis'”

have shown that the entire
mathematical structure of the connection between standard
statistical mechanics and thermodynamics is preserved through the

present generalization. To be more specific, they prove that

as q/auq=1/'r, (7)
that
U =-(8/88) [ (2 -1}/ (1-q) ) (8)
and that
Fq!Uq—TSq (9)
=-kT (2’ %~1) / (1-q) (10)

Let us now define as follows the generalized specific heat
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C xToS /8T (11)
8ince T is not a natural variable of U‘I and sq, Eq.(9) implies
8F q/1!3'1'-=--sq. Deriving once more yields &°r q/a'rz--as q/a'r, hence, by
using definition given by Eq. (11),

2
€, =~To Fq/aTz. (12)
It is also straightforward to establish that

C =8V /oT. (13)

By using Egs.(4), (5) and (6) we obtain

e? €
a q N q "
¢ /k=— _ 1%|Pn T=g(i-gjc |~ |EPata| |EP. G- |l . (4

(kT) n n

It straightforwardly follows that
c q/k=qz““<(En-<:-:n>)2>/(k'r)2 (15)
with
Exc /[1-B(1~g)E ] (16)

and where <f(c )> stands for E]:f(c ), £ being an arbitrary
function. We notice that the fluctuatjon form of the specific heat
is preserved through the present generalization. Furthermore, we
remark that Cq has the sign of g (i.e., quo for g>0 ang Cqso for
g<o0).

Since the g=1 case corresponds to the well known
Boltzmann-Gibbs Statistics, we shall analyse the cases g#1. Let us
illustrate the typical situation by discussing the two (degenerate)
level system (if the number of levels N>2 the situation is
slightly more complex, but follows essentially along the same
lines). We denote by e, () and g, (glj, the fundamental
(excited) energy level and its associated degeneracy.

If g<l, three different basic situations can be distinguished,
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namely:

(1) 1f €, >€ >0 it follows that: for T e [0,(1-q)c°/k] we have a
thermally forbiddep (physically unaccessible) region because at
least one level must be populated (we recall that ann-l): for T €
((l-q)co/k,(l-q)cx/k] we have a thermally frozenh region since
P,~1/9, and pP,=0; for T> (1-q)c‘/k we have a thermallvy active
region; finally for all negative values of the temperature, the

system is thermally active. In fact it is thermally active even
for T=0 if we are approximating from negative temperatures and at

this point, the population of the fundamental state and the

excited state are respectively
po=gocouu-q1/(goco1/(1-qn+gleiuu-q)) and
pl-glciuu-q)/(gocouu-q)_'_g’ciuu-q)) ,

(ii)1f °1>°>€o it follows that: for T e [0,(1-q)c.1/k] we have a
thermally frozep region since pow:!./go and 'pl-=0: for T>(1-q)cl/k we
have a thermally active region; for T e ((1-q)e /k,0) we have

another thermally frozen region (now with 1::1===1/g1 and po=0), and
for T < (l-q)co/k we have another thermally active region;

(iii)I1t €,<€,<0 it follows that: the system is thermallv active
for all positive values of the temperature. In fact it is
thermally active even for T=0 if we are approximating from

positive temperatures and, at this point, the populations of the

fundamental and the excited states are respectively
p°=go|c°'1/(l-q)/ (g(:'lt:olu(i.-ﬂ)_'_gl IC’ ll/(l-ql) and
pfgiIclqu'q'/(golcoluu'q)+glIcllvu-q)) ; for values of T €

[(l—q)el/k,OJ we have a thermally forbidden region; for T €
[(A-g)e/k, (1-g)e /k) we have a thermally frozen region since
pl--=1/g1 and p,=0 and, finally, for T < (1-q)co/k we have another
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thermally active region.

If g>1, again we have three different basic situations, namely:

(1)1£ c1>co>0 it follows that: the system is thermally active for
all positive values of the temperature. In fact it is thermally
active even for T=0 if we are approaching from positive
temperatures and at this point, the populations of the fundamental

and the excited states are respectively

17(1-q) 1/(1-q)

1/(1~q)

+gic1

Po=9%0
Pfg,c,‘/“-q,/ (9,€, 1/(1-q))
For T € [(1-q)co/k,0] we have a thermally forbjdden region, for T
€ [(l-q)cilk,(l-q)co/k) we have a thermally frozen region, and for
T < (l-q)ci/k we have another thermally active region:

(ii)1f €, >0>¢, it follows that: for T € ((1-q)e /k,0) we have a

*

thermally frozen region since ;'.'c'u:l./q.;o and p1-=0, for T>(1-q)co/k
the system is thermally active. For T € [(1-q)1:1/k,0] we have
another thermally frozen region with p1=1/g1 and p°=0, and for T <
(1-g)e /k the system is once again thermally active;

(iii)I1f € <€ <0 it follows that: for T e [0, (1-g)e,/k] we have a
thermally forbidden region, for T € ((1-q)ci/k,(1-q)eo/k] we have
a thermally frozen region since P,=1/9, and P,=0, for T >
(l-q)co/k the system is thermally active, and for all negative
values of the temperature the system is, once again, thermally
active. In fact it is thermally active even for T=0 if we are
approaching from negative temperatures and, at this point, the

populations of the fundamental and the excited states are

1/7{1-q) 1/{1-q)

s 1lI ) and

respectively p0=goleo|"“""/(g°icol

1/7(1-q} 17(1~q) 1/{(1-q)
F—]
P, ‘;’1“::t /('-:It-.»lt:mI +gllcil ).
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If g»l1, the absolute value of €, is physically relevant,
conseguently an addjtive constant in the spectrum will produce
physical effects (contrarily to what happens for g=1, in which

case additive constants in the spectra are completely inocuous).

11 FREE PARTICLE: QUANTUM CASE

In the framework where the generaljized internal energy is
assumed to be anncn, specific heat calculations are available for

[1,4}

the two-level systen » the harmonic oscillatorm

and the
one-dimensional Ising model™. In the present paper we focus,
along the 1lines of Ref.[3] (i.e., by assuming Eq.(4)}), the
specific heat of a one-dimensional free particle characterized by

en=An2+B (n=0,21,%2,...) (17)
where A>0 and B any real number. The replacement of this spectrum
into Eq.(14) enables in principle the calculation of the specific
heat C q/k as a function of (kT/A,B/A,q). We have not succeeded in
analytically calculating this function for the general case.
However, in all cases, the numerical treatment is possible.
Moreover, the analytical calculation is mathematically tractable
(though not trivial) for some special cases, such as g=(m+l)/m
(n=1,2,3,...) and arbitrary B. Let us illustrate this fact by
presenting the (q,B)=(2,0) case:

1 , 2%’ \
cz/k=—4 tanh™x +—’-‘-——tanhx - 2xtanh™x - 1 (18)

with x=nvkT/A.

We present, in Fig.3 the thermal evolution of ¢ q/k for B=0
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and typical values of ¢. We remark:

(i)For qz1, Cq is positive everywhere excepting at T=0 where it
vanishes; both cq(T) and 4c¢ q/cl'r are continuous for all finite
tenmperatures;

‘(ii) For 1/2<qg<1, C‘I is positive for all temperatures above
(1-q)A/k, and vanishes in the interval T e [0, (1-q)A/k]; Cq(T) is
continuous everywhere, but not dac q/ﬂ':l‘, which presents
discontinuities at Tvn(l-q)iwz/k, (v=1,2,3,...);:

(iii)For 0Osgsi/2, qus positive for almost all temperatures above
(1-q)A/k, and vanishes in the interval T e [0, (1-q)A/k]): Cq(T)
itself presents now discontinuities at 'I'vw (1-q) sz/k,
(v=1,2,3,...) (cq(T) vanishes also for 'I'-vTv-O) |

(iv)For g-+0, Cq(T) vanishes everywhere excepting at 'I'v=Av2/k
(v=1,2,3,...) where it takes positive values which monotonically
increase with v»;

{(v)For g»-0, Cq(T) vanishes everywhere excepting at Tv=Av2/k
(v=1,2,3,...) where it takes large negative values which become
larger as v increases;

(vi)For g<0, t'."I is negative for almost all temperatures above
(1-g)A/k, and vanishes in the interval T € [0, (1~qg)A/k]}; cq('r)
itself presents discontinuities at Tv=(1-q)Av2/k, (v=1,2,3,...)
(Cq(T) vanishes also for T-'TV-O) .

Let us now exhibit the influence of B (which, we recall, is
irrelevant only for g=1). We present in Fig.(4) an example for
g>1l, and in Fig.(5) an example for q<l. We remark in Fig. (4)
(which illustrates the case g>1) that for B=0, cq('r) is continuous
everywhere, positive for all finite temperatures and vanishes at

T=0, whereas, for B<0, cq(T)/k vanishes in the interval T e«
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{0,(9-1)|Bi/k}, presents a discontinuity at T=(q-1)|Bi/k where it
achieves (for T-+(g-1)|Bi/k+0) the value (2n°/3)(qg-1)k|Bi/A, and
varies continuously thereafter.

Concerning Fig.(5) (which illustrates the case 0<g<l) we can
distinguish three situations, namely:

(i)For B>0, the region T € [0,(l1-q)B/k] is thermally forbidden,
the region T € ((1-q)B/k, (1~g) (A+B)/K] is thermally frozen, and
finally, for T>(1~q) (A+B)/k, c; is positive everywhere and
presents discontinuities at Tv=(1-q)(Av3+B)/k (v=2,3,4,...);
(ii)For B<0 and A+B>0, the system is frozen in the interval T e
[0, (1-qg) (A-IBIl) /K], Cq is positive for higher temperatures and
presents discontinuities at Tv=(1-q)(Av2-lB|)/k (v=1,2,3,...):
(iii)For B<0 and A+Bs=0, the system is frozen only at T=0, active
at all finite temperatures and C; is positive and presents
discontinuities at Tv=(1-q)(Ay?-lBl)/k at all integer values of v
above a value v which increases with increasing |B!.

The influence of B#0 for the g<0 cases mainly relies on the
fact that the discontinuities of Cq (which everywhere satisfies
C%sO) occur at temperatures which depend on B, more precisely at
temperatures Tv=(1—q)(Ava+B)/k.

The T+o asymptotic behaviour of C; (hereafter referred to as
the classical 1limit) presents particular interest and will be

discussed in the next section.

III FREE PARTICLE: CLASSICAL CASE

The classical behavior of the specific heat (noted C;”“’)
is obtained, for g=1, by replacing, in Eq.(14), the sums by

integrals. We shall follow along these lines for generic .
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For 1<g«<3, we obtain
1-q
Ca (3-q) (g-1§9°1773] r[(3~q)/(2q-2)]
x . " TT/(e1)]

KT/A

(19)

- (qe+1) /2
[k'r/m (g-1) B/A]

For g+l we recover, for all finite values of T, the well known
result (%/k=1/2. Although some of integrals (replacing sums in
Eg. (14)) diverge, the specific heat seems to vanish for all finite
values of T for gz23.

For 1/2=g<l, we obtain

1-q
€. (3-q) (1-q) ‘9172 r((2~q)/(1-q))
* ° 2 T T/l
KT/A

(20)

' (qe1)72
[k'r/m (g-1) B/A]

Also here, for g-+l, we recover for all finite temperatures, the
result Ci/k=1/2 .

For q<1/2 some mathematical subtleties are encountered
related to the fact that, at T=Tv=(1-q)(hva+a)/k, discontinuities
exist in the specific heat. More precisely, at T=Tv three

different values can be calculated for the specific heat, namely



CBPF-NF-014/92
-10=

- * class
¢, 'nm-r-rv _ocq(T) v € llimr_.rv .ocq('r) ' and finally . . We

verify for 0<g<l/2 that Cq“<Cq°"“<Cq°: in the g-1/2 1limit we
obtain cl;z-cij;‘“-c‘:z: in the q+0 1limit we obtain ¢ =0,

co""" is finite and co'-on. For q<0 we verify that
c cllll>c “=0>C ".
q q q

Egs.(19) and (20) yield, for B=0, Cq o Tu-q)/z’
consequently: (i)in the T-0 1limit, c:"" diverges (vanishes) for

g>1 (1/2sg<l); (ii)in the T+» 1limit, ¢ °'***

diverges (vanishes)
for 1/2sq<1 (g>1). These facts are exhibited in Fig.(6). In Fig.(7)
we plot, for finite typical values of B the temperature evolution
of Cq.We can remark some points: 1i)The T+» dominant behaviour

(1-q)r2

still satisfies C o« T for all finite values of B; (ii)In

the low temperature region, C‘1 vanishes when T-+0 (diverges 1like

~(qe1)/2 when T+| (g-1)BI+0 and vanishes when

[T-1(g-1)BI]
T<|(g-1)Bl) for 1/2sq<l and B=0 as well as for g>1 and B>0 (for
1/2sgq<l1 and B>0 as well as for g>»l1 and Bs=0).

In the T»» limit, the replacement (in Eq.(14)) of the sums by

integrals becomes inocuous, hence we expect Cq(T)-cq‘““

(T). This
fact is exhibited for g>1 (Fig.(8)), 1/2sg<1 (Fig.(9)) and g=1
(Fig. (10)).

Fig.(10) deserves a comment. 1Indeed, any Statistical
Mechanics textbook contains the c¢lassjical result c /k=1/2,
but—surprisingly enough!—we found nowhere the guantum result
(this curious absence is probably due to the fact that, for all
typical physical systems, the quantum region of a free particle
specific heat only appears at tremendously low temperatures). It

is now worth stressing that the quantum free particle specific

heat presents, as a function of T, a maximum, similarly to that of
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—11e

the standard rigid rotator and in variance with that of the
harmonic oscillator (for which Cl‘monotonically increases with T).

Finally, we have calculated cq"“' corresponding to the
spectrum ea-Anﬁ+B n=0,1,2,...) for A>0, r>0 and B any real

number.We obtain, for 1l<g<r+l

1-q
r(1/r)r(1/(q-1)-1/r)

- q-1 - _ {g-1)/r —
C/k=r" (r+i-q) (g-1) T(1/(q-1)

kKT/A

(21)
(req-1)rs2
[kT/A+(q-1)B/;]

and for g<l

1-q
r(1/r)I'[(2-q)/(1-q))
TL(x+(x+1) (1-q))/(x(1-q)) ]

¢ /k=r">(r+1-q) (1-q) V"

kT/A (22)

(r+qgq=-1)72
[kT/A+(q-1)B/A]

Egs. (21) and (22) yield, in the g-»1 limit, (ﬂ/k=1/r for all finite
temperatures, thus extending the result obtained in Refs.[6]. It
is also worth mentioning that Egs.(21) and (22) do pot reproduce,
for r=2, the classical specific heat given by Egs.(19) and (20)

(but rather 29! times it): the reason is of course transparent,



CBPF-NF-014/92

- =12-

namely related to the fact that in this last part we have used

n=0,1,2,3,..., instead of n=0,%1,22,....

-4V CONCILUSION

We studied here a possible generalization of Boltzmann-Gibbs
statistics. It has been observed some uncommon results for the
specific heat of a l-dimensional free particle. For instance, the
thermodynamical third principle is violated; the same happens, at
T - «, for the classical equipartition of energy. However, in the
present generalization, both the gquantum and classical
calculations assymptotically coincide at high temperatures.
Another interesting fact is that the result found for g=1 can be
faced as a non-uniform convergence of those found for g#l. Llast
but not least, we exhibit here (surprisingly enough, for the first
time as far as we could check) the guantum Boltzmann-Gibbs
specific heat of a free particle.

Let us conclude by stressing here that until now it has not
been established the experimental limits for the Boltzmann-Gibbs
statistics, i.e, the precision within which g=1. Also, it may be
that for some process, for instance biological ones (see for
example Ref.[7]) the entropy formula needed is other than the

Shannon one.

Acknowledgments: We acknowledge fruitful <discussions with

F.Tamarit,W.Morgado and P.Pury.
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CAPTION FOR FIGURES

Fig.l p-dependence of Sq (a) and Si‘ (b) for number of
microstates equal 2 and typical values of q (let us mention here
an Erratum of Ref.{3], namely that property 3 holds as stated for
s, but not always for s“q)

Fig.2 #c -dependence of qun for typical values of g (this
figure has been adapted from the corresponding one in Ref.[1]);the
vertical dashed line represents the g=2 asymptote.

Fig.3 Thermal evolution of C;/k for B=0 and typical values of q:
(a)gzl/2; (b)o0<g<l/2: (c)g<o0.

Fig.4 Thermal evolution of C;/k for gq=2 and typical values of B:
(a)B/A=~0.08;: (b)B/As~0.08

Fig.5 Thermal evolution of CQ/k for g=1/2 and typical values of
B.

Fig.6 Thermal evolution of Cq /k for B=0 and typical values

of (.

Fig.7 Thermal evolution of C;”‘"/k for typical values of q and -
B

Fig,8 Comparison, for typical values of g>1 and B=0, of the
classical and gquantum specific heats.

Fig.9 cComparison, for B=0, of the <classical and quantum
specific heat: (a)standard temperature scale and typical values of
g<l; (b)very large temperature scale and g=1/2.

Fig.10 Comparison, for g=1 (Boltzmann-Gibbs statistics) and
arbitrary B, of the classical and quantum specific heats.
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