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Abstract

We examine the gravitational coupling of Klein-Gerdon and Dirac flelds to
matter vorticity and spacetime torsion, In the context of Einstein-Cartan
theory. The background spacetime 1s endowed with a Godel-type metric,
characterized by two real parameters (Q,EZJ; the source of spacetime curvature
is a Weyssenhoff-Raabe fluld with spin vector parallel to the vorticity field.
We show that torsion and matter vorticity have 1dentical effects on the
physics of particle fields. Complete sets of solutions are obtained,
satisfying boundary conditions connected to the test fleld character of the
sclutions. The energy spectrum obtained is discrete 1n general, except for
the case of hyperbelic G8del-type geometries (£2 > 0) where a contlnuum region
in the energy spectrum may appear: 1if 0 < na < tz a continuum region 1is
present in the upper part of the spectrum; if Q= ta, Dirac solutions may
present, under certain conditions, a continuum region in the lower part of the
spectrum. The <correspondence between classlcal geodeslic motion and
Klein-Gordon soclutions 1s established, and used as a guide to select the
correct boundary conditions for the test flields.

Matter vortlicity and/or spacetime torsion split the energy spectrum of
Dirac particles. These effects are additive and result from the exlstence of
the same constant of motion for both cases. This constant of motion
generates a trivial symmetry of the system in Minkowski spacetime, but whose
associated degeneracy is raised by matter vorticity and/or torsion fields,

producing the above-mentlioned split.

Key-words: Dirac fields; Klein-Gordon fields; Torslicn; Matter vorticity;
Gddel-type unliverses; Fleld theory In curved space.
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1 Introduction

The object of this paper is to study the concurrence of the effects of
matter vorticity and spacetime torsion on the physics of matter fields, in the

context of Einstein—Cartan—HehllLZI

theory. The problem is not purely
academic, and as motivation we recall that the present observed rotation of
galaxies and nebulae can be an indication that matter vorticity played an
important role in the dynamics of the primordial universe; on the other hand,
although torsion has no observable effects on the present experimental tests
of gravitational theories, it could in principle also produce strong effects
on the physics of extreme astrophyscial configurations. In this sense the
results of our investigation could have some interesting applications in the
realm of cosmology and theoretical astrophysics.

For operational simplicity we take the background spacetime endowed with
a Godel-type metric[&4], and the source of spacetime curvature is a
Weyssenhoff-Raabe fluid[5]. As a by-product this paper extends naturally the
investigation of the motion of particles in Gddel-type spacetimeslﬁ?l,
approaching this problem from the standpoint of Klein-Gordon and Dirac test
[8,9,10] of the
gravitational coupling of particle fields to matter vorticity, in the General

Theory of Relativity.

fields. Also this paper extends previous analysis

The paper has the following structure. In Section 2 we present a general
characterization of G&del-type geometries and the admissible sources of
spacetime curvature in Einstein-Cartan-Hehl theory. In Section 3,
Klein-Gordon equation for a complex scalar field on this background is
examined, a general set of solutions is obtained, separated in the invariant
modes defined by the Killing vectors of the background geometry. In Section 4
the correspondence between classical geodesic motion and Klein-Gordon
solutions is established, and arguments are given to justify the choice of the
boundary conditions used in Section 3. In Section 5 we make a similar
analysis for Dirac fields and introduce Foldy-Wouthuysen and Cini-Toushek
representations of the solutions to interpret the constant of motion that.
appears in the dynamics of the Dirac field. Finally we conclude in Section 6

by discussing further topics to be examined in a future publication.
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2 The Gidel-type Spacetimes in Einstein-Cartan Theory

For completeness we present here a general characterizatlon of the
background spacetime, endowed wlth a homogeneous GSdel-type metrlic, and the
physical sources of this curvature. In the coordinate system (t,r,¢,z) the

line element of the spacetime can be cast in the form

ds® = (4t + Hd¢)® - dr? - D%a¢® - a2°,
(2.1)

_ sinh 2ir

) 2
H—?sinh[!r) » D—T.

where 1 and £ are real parameters, with -m < £ <o Throughout the paper,
we will assume that {2 is non-negative.

According to (1.1) we can dlvide our class of two-parameter spacetimes
into three families: (i) the hyperbolic family > 0), which includes
1l (2 =0%2) as a special case; (ii} the Som-Raychandhuri
spacetime ¥ (£ 5 0), and (111) the circular family (£ < 0). We note that
for £2 < 0, the hyperbolic functions in (2.1) transform into clrcular

Godel ‘s universe

functions. A possible natural cholce for the range of the cocrdinates covering
all manifolds in question is w < t,z < w, 0 ST <w, O % ¢ < 2n, for & = 0;
and @ < t,z<w, 0= |2|r s x, 0 s ¢ < 2r, for £ <0, In any case t will
be called the temporal coordinate, ¢ the azimuthal one and z the axlal one; as
concerns the coordinate r, it ls naturally interpreted as a linear magnlitude
for £ 2 0, and will be called accordingly the radial coordinate, whereas for
£ <o 1t is naturally Interpreted as an angular coordinate and so will be
called the zenithal coordinate. In this last case (Lz < 0} the coordinates
r,¢ are defined on a (topological) 2-sphere, with |2£|r = 0,w corresponding to
the north and south poles, respectively.

From the global point of view the manifold of Gbdel-type spacetimes can
be characterized[“’iﬂ

for £ > 0, M® 1s the 3-hyperboloid H>, (i1) for £ < 0, M is the 3-sphere

as the simply connected Lie group M x R where, (i)
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s®, and (1i1) for £ = 0 M® is the Cartesian product C° x R, where C> is the

topological cylinder. By going to the corresponding universal covering group
for each case we can adopt for Gddel-type spacetimes the topology of r*.

The constants § and & are determined from Einstein-Cartan equatlons in

the framework of Hehl'‘s non-propagating torsion theory[1'2]. with a

Weyssenhoff-Raabe fluid 5,131

comment later (Section S5) the main motivation for the cholce a W-R fluild.

as source of spacetime curvature. We shall

We define the torsion tensor ti]k as the antisymmetric part of the

connection,

T l"[m , (2.2)
and, for reference, the contorslon tensor
K!' =qg!' ¢ V-t (2.3)

We assume that torsion is generated by the spin Sijk of the Weyssenhoff-Raabe
fluid,

=us , usS =20 (2.4)

S

5k Ik 13
where u' is the four-veloclty fleld, and Sij = - SJl is the spin density of
the fluld. From the metricity postulate (gu_k =0) and the field
equationsu'zl we cbtain for the connection

i
r' = -x (2.5a)
jk Jk 3k )

with
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i
jk

i i i .
K k(us, ~uS -uS ) (2.5b)

where k 1is Einstein‘'s constant and {Jk

i } is the Christoffel connection

constructed with the metric g.

For an observer comoving with the fluld we choose the four veloclty

u =3 (2.6)

-1 ekljts
2vV-g

and assume the fluid spin vector sk = iju! to be constant and

directed along the 3-axis,

sk = - 55‘3 , S = const. , (2.7)

that is, S12 ® 0, SlJ = 0 (other indices}. We note that the above assumptions
are general, the only restrictive one belng S = const. which can also be
considered as a first approxlimatlon to a general case. For the geometries
(2.1) the spin vector field 1s parallel to the vorticity fleld

, (2.8)

and we have in the realm of Hehl ‘s theory that
Q= no + kS (2.9}

A realizatlon of Godel-type sclutions (2.1) with torsion was presented by

Tiomno et a1.13]

A resumé of their results Iis now given. In General
Relatlvity Theory, if we restrict the matter content to a perfect fluid, an

electromagnetic fleld and a massless scalar flield, we can only yield line

elements with -o < & = 0° as solutions of the appropriate coupled fleld
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equations (Einstein-Maxwell-Kleln-Gordon equations), whereas in
Einstein-Cartan-Hehl theory it 1is possible tc¢ generate all line elements

(-w < & < w) taking only a Weyssenhoff-Raabe perfect fiuid for matter
content (cf. Eqs. (2.4)-(2.9)).

The class of geometrles (2.1) admit the five Killing vectors '

a 9 _9d-
kKo "3t * *=3m » k&> © 3¢ (2.10a)
a 0 sinhir 8 cosh2lr &
Ky = 50 3¢ sln¢[1- coshlr 3t * 2 Sinmatr T3 (2.10b)
a Q sinhlr @ cosh2lr 8
Kw sing zr - cosd|7 oentr at * 2L simnzlr a¢ (2.10c)
with the corresponding Lie algebra .

K - -0=[Ku).K“)] , iI=0,...,4

_KtzJ’K(ai_ =K, [K(zl’Km] = - Ky (2.11)
= — ap® Q
[K(:n’xm] =-4a [K(zl 202 K(l:n]

For future reference we define from (2.10) the vector flelds :
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-6-.
1
. Lu) =2 I((:n
L =1k (2.12)
@ 2w
Q
L = - 1[K — K ]
(3 2 L,z (0

They satisfy the angular momentum algebra

[L(a)'le)] = -1t Lo (2.13)

for any value of £ # 0. We remark that definition (2.12) cannot be extended

to the case of geometries with lz = 0.

The five Killing vectors (2.8) are right-invarlant vector fields''S'!®

over M> x R and therefore globally defined on the group manifold. We then

select (2.10a) to construct the global invariant modes do(” defined by“"

28/3:":3: s T 1k3¢{3) ' za/a¢¢(2, =" 1m¢(z) (2.14)
Lor0tPi) = " 158, (2.15)
=ik =z
3 -im -1gt
with respective solutions ¢(31 ~ e . ¢{2) ~ @ and ¢(0) ~ e . We

interpret (2.15) as the definition of the invariant energy modes, and use ¢(”
' to separate fleld amplitudes in the modes (c,m,ks).
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3 Klein-Gordon Test Fields
The Kleln-Gordon equation for a complex scalar field ¢ with mass M and

minimally coupled to gravitation is given by

-1 s [\/-_g' g'ls ¢] + Mo =0 (3.1)
vg ! )

We note that the scalar field ¢ has no direct coupling with torsien. For
Gédel-type geometries (2.1), equation (3.1} can be expressed

ol 2 2
i’2¢=L2‘;"za—z—9—5+M"]¢ (3.2)
a?l 2 s a2

r

where fa = [L(“]z + [L(Z}]2 + st)]z is the square of the angular momentum

operator defined in (2.12). We note that, for the case £ ¢, the

positive-definite scalar product in the vector space of angular momentum
algebra has its correspondent as an Indefinite product in the vector space of

the algebra of H® isometries.
We consider scalar field solutlons in the modes (2.14}-(2.15),

-ik_z

¢ = ¢(r)e-"¢e 3 it (3.3)
The field equation {3.2) reduces then to the eigenvalue equation
Mo+ke 2
2, _1 -2 2 3 n-1
f‘*‘z = e =220 (3.4a)

L

Introducing the variable x = cosh2lr, eq. (3.4a) ylelds
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-8
2 2
£ + 2Qem
2 2 2 2
u’(x“-1)"—z+u’x§x-+4.cz ¢ . -2 -“_;1 #r) =0  (3.4b)
dx 28°(x+1) x°-1

[18}

and we distinguish the set of solutions which are regular at r = 0,

- Qe
- 2 _oy =i (mek_zeEL)
ol = (3-1)%(x+1)2 F[a,b,c;l—’-‘- e 3 (3.5a)
€n 2 .
for m 2 0, and
- - E—-—
- - 2 _ -1 (mp+k_z+EL)
! = (x*-1) 3(x+1) 2t F[l-b,l-a,z-c;l—-—]e 3 (3.5b)
€m 2
1-x [19]
for m = 0, Here F a.b.c;—z—— is the hypergeometric function with
parameters
a=m+ = + e, % ,
202
b=m+z+ o -2 (3.6)
2¢
c=n+1 H

m is an integer and n is defined by the second equality in (3.4a). For

m=0, ¢x and ¢II are linearly dependend. The sets {3.5a) and (3.5b) are
related by
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[I(

o'qbl(c.m,k:,) = ¢ -e,-m,-kal. (3.7)

where o =1 for &> 0, o= (-1 for £ < 0, and * denotes

complex-conjugation.
For the case &£ = 0 (Som-Raychandhuri if Q # 0, or Minkowski if 2 = 0) we
return to the variable r, making the approximation X~ 1 -l-ler'2 and taking the

limit & 5 0 in equation (3.4b). The corresponding scalar solutions will be
obtained as the 1imit £ 5 0 of the hyperbolic solutions (0° > £ > 0).

On the space of solutlons (3.5) we introduce the operators

_ el [z 08 o Ax 8 . ia /x1 8
by Shyy 21k, =e [x 1 ? 2.1 OF ¥ 292/ **1 at]

They satlsfy

(3.8)
[L-i-' L—] = 2L(3)
and
L’ = if £>o0
Ly =1y
(3.9)
L = -1 if £<o
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-10-
Their action on the set (3.5a) is
Lot ™~ 3¢ Pom
Lo, = 2no, (3.10)

o = [m+E_]¢I

(3) €m 2"2 Em

and the effect on the set (3.5b) is obtained by complex-conjugation. By
using (3.8) we can show that for a given solution ¢£_ (eigenstate of L(a) with

eingenvalue m + %), L+¢e- is also a solutlon which is elgenstate of L3 with
2L -

elgenvalue m + te t 1. So starting from a solution with a given m it 1s

222
possible to generate the whole set of solutions (3.5) by successive

applications of L,. For instance, starting from ¢I (m = m )} we can obtaln all
+ o

sclutlions ¢!(m > mo) by successive appllications of L+. The solutlons

¢I(m < mo) are obtained by applications of L, reaching qbl {m = 0). The
application of L on ¢I(m = 0) will result in ¢u(m = - 1), since, from
(3.10),

tin L ¢'(m) = 2 tim [(c-u.p‘(n-n] ~ ¢ m=-1)
[ c=10

Successive applications of L on ¢u(m =-1) will produce all other
solutlons ¢n{m < -1).

To proceed we impose boundary condition on the set {3.5), connected to
the character of test flields of the solutions, namely, that the scalar field

solutions are flinite perturbations at any spacetime point. We assume
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-11-
lin ¢'¢ = 0 , if>o0 (3.11a)
XD
tim ¢'¢ =0 . if <o (3.11b)
x—1

These condltions may result in discrete or continuous energy spectra as
well as in restrictions on the allowed physical interval of m, and are
sufficlent to guarantee the normalization of the discrete energy seclutiens.

On the set of solutions (3.5) we define the scalar product

<., |9 = J' V=g d*x 4., (x)¢_(x) (3.12)

where the domain of integration extends to the domaln of definition of the
coordinates (t,r,¢,z). Under (3.12) the subset of discrete energy sclutions

are normalizable, as we shall see, and we have the property

<@, |l = - <L [¢> if £>0

(3.13)
W |Lg>=<Lg [¢6> if £<o-

We remark that (3.13) holds only for the subset of discrete energy solutlions.

Let us consider the cases

Hyperbolic metrics 2 > 0):

(1) If n® = 1, the boundary condition (3.11a) imposes

fic

2, w2 222 fle . I=x
¢En = (x-1) "(x+1) F[j+m+1, m-j + IE, m+l; -

-1(ct+-¢+k3z)
]e (3.14a)

for 0 < m < w, and
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w}Pe
. . fe
- = 2 _ -1 (Etemiek_z)
$., = -1) 2(x+1) 2¢ F[-n-_), j-—n+1-n—:', 1-m;-1T"]e 3 (3.14b)
A
for -} s m = 0. Here j = non-negative integer, and
2 2 2 172
e = (2)+1)0 + [(n -£)(23+41)% + M° + kS + z‘] (3.15)

The complete set of positive-energy sclutlons for thils case ls given by the

union of (3.14a) and (3.14b). The range of m iIs limited to

- Jsm<aw, (3.18)

We obviously have L_¢€ -3 = 0. The corresponding negatlve-energy

solutions are obtained from (3.14}) by using the transformation (3.7). The

solutions are said to have a discrete energy spectrum, and are normalizable
with respect to (3.12) because they also satisfy 5&3 v-g ¢'¢ = 0.

(11) 1f n® < 1, solutions (3.5) satisfy (3.11a) automatically, and are

non-normalizable because 5%& v-g ¢f¢ # 0. The range of the integer m is not

restricted (-o < m < »), and the solutions have a continuous energy spectrum.
We remark that, in fact, the only normalizable solutions for this case

£ >0 are the discrete energy solutions described in (i), eqs. (3.14) -
(3.15).

In short, we have

for n° = 1: discrete energy, and *tmz - § (for % g)

(3.17)

2
for n < 1: continuous energy, and - o < m < »
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-13=

These results can be restated in terms of the metric parameters (Q,1).

2 .2
Q22 3 M2+k3+£
£ ¥ — (cf. (3.4a)) we conclude
ot 2

1) For spacetimes with nz z tz, the solutlons have a discrete energy specitrum

From the expression n =

only.
2) For spacetimes with o < lz, the solutions have a discrete spectrum for

£2|M2+kal

values of the energy such that e = 2 : . For wvalues above this limit
"= q

the spectrum is continuous . The quantum number j ~ associated to the

discrete part of the spectrum - is restricted by

+ K 1/2
3

-

Q

2y +1 sy (3.18)

In both cases the discrete energy levels are glven by (3.15). The
quantum number J is a non-negative integer, unrestricted in case (1} and
restricted by (3.18) in case (2).

The dlscrete energy solutions can be easily normalized, starting from the
norpalization of the particular scolution ¢n(m=-,j) and using the relations
(3.8), 3.10) and (3.13). We obtain

2y a.+—+‘::1 3 ![m!)zr[%-J]
2n
W, b, > 2 3, 8(k’—k_)a(e’ <)
ewky ek g2 (m+ ) [‘-“’5-23-1]1'[9‘?:1-5] we3 3
) ¢

for 0 <m < w, and
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_14_
| , (J+m)![(-n)!]2F[E£-J+m]
< ¢ (2m) ¢ . .
e'w'k’ | Tenk > = 2 3 3{k’-k )a(e’~£)
3 3 2 fle »'n 3 3
a2 J! —-2J 1] [—‘J]

for - J =m =< 0.

Circular metrics (83 < 0)

This case demands a more careful analysis in order to encompass also the
solutions of the Q = 0 1limit.

On the set of solutions (3.5) we 1impose the boundary condition
(3.11b). In what follows we denote & = - A%, and we note that
nz -1>0. We obtaln[2°]

Qe
- il
- 2 _ =1 (mp+k_z+EL)
6 (x) = (x>1) 2(1+)0% Flsn+14%, -n-3, 1-m; 1-]e 3 (3.192)
€a 22 2
for - } s m =0, and
- - 9?—2 -l(n¢+k3z+su
¢ (x) = (x*=1)2(14x) 2A [n—,j-&, m+j+1l, m+l; 1x e (3.19b)
£a Az 2
Qe -
for 0 = m < - Here j = non-negative integer, and
A
e = (25+1)0 + Y23+12@ 3% + ¥ + kg - A% (3.20)

The range of m for the positive-energy set of solutions (3.19) is them

- Jsm<Qen® | (3.21)
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-15~

The corresponding negative-energy scolutions are obtained from (3.19) by
complex-conjugation (cf. (3.7}). The solutions have a discrete energy
spectrum, and are normalizable in the sense of (3.12), for any (Q,A).

A further set of normalizable solutlons is also obtained, that are
distinct from, and are to be added to the family (3.19) since they are
fundamental in view of the limit & = 0. They have the expression

921
- - —
- 2 Qe -1{m{+k_z+E t)
2 ..2 22X 1 1-x 37 1
'ﬂc = (x +l) {1+x) F[m J, l'll"'J"'l —2—. m+l; T]e (3.22)
1,m A
where the energy eigenvalues are
e, = - (2j+1)0 + Viz3+1)3 (@293 « ¥ + K-, (3.23)
and the range of m is given by
ch
2 nE (3.24)

In the limit Q =0, Ao (diagonal metric) the restrictions (3.21)
and (3.24) disappear. The family of positive energy solutions 1s then given
by (3.19a) and (3.22), which can be expressed in the form

-1 (n¢+kaz+ct )

¢, = P:(x)e (3.25)

where

=3

e = V2r1)R® + B + k: - A%, (3.26)
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-16-

and P:(x) are the assoclated Legendre Polynomials“g’, with =} s m s J. This

result should be expected since Eq. (3.46) reduces to the assoclated Legendre
equation for Q = 0.
The normalization of the solutions can be performed analogously to the

case of hyperbolic metrics, by using the operators Lt' The results are

Qe
-2m+—+1
3 a2 2
< T _ (2m)72 (J+m)t[(~m)!] .
ewk; ! Veak, 412[E +2)+ 1] Jt
22
l"[gg + ) +,_1']
5 ,
8,6 8(kl~k_)é(e’'-e) , for - s m s 0 (3.27a)
W_ﬂc_ + J -m+ l] n'm 3 3
2
A
2--%41
¢ ¢ - (zm) 2 A J!(m!]2
e'wk; ! Temk, Qz[&e_*_ 23 + 1] (J+m)!
22
M€ +5+1-n
22 Qe
Ge 8 &8(k’'-k )3(e’-¢e) , for 0 s m < — (3.27b)
r[_+J+1] m'm 3 3 22
) 2
and
ml
2--T+1
A 2
(2r) %2 (J-m)! (m?)
<we;m’k;|we nk ¥ ! N x

e
3 413[-_ +2)+ 1)]
Az
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Qe
’ _ v _ 1
6'.-6{k3 k3}6(c1 81?' for ;5_ <m=x]J. (3.27c)

nel
I‘[—-—;+J+n+1]
A

For the case of dlagonal metrics (2 » 0) the normalization is trivially
obtained by making 2 = 0 in (3.27a) and (3.27c):

s < (20%2%* (Ju[1)2(3-|m])!
(21 Orimp

r v

for - jsms= j;

This define the normalization adopted for the associated Legendre Polynomials
used in (3.26).

In short, the KG solutions for circular metrics (& < 0) present: (1)
discrete energy spectra; (ii) bounded range of nm.

Som-Raychandhurl metrics (22 = 0)

As mentioned before, the scalar fleld solutlions for this case are
obtained as the limit ¢ > 0 of the hyperbolic sclutions > £ >0). as
{ 5 0 we make the following approximations in (3.14):

b =m-,j+——-->r—&-
¢ 2R
x=cosh2.'.r'->1+bg

where £ = Qer? and
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e = (25+1)Q + v/(23+1)‘n“ + M+ k: ‘ (3.28)
Taking b » » and using the relation
in F(a, b, ¢; %E] = e'EF[c-a, c: E] ,

bco

where F(a,b;§)} 1s the confluent hypergeometric functionug], it finally

results (after straightforward manlpu;ations)

£
172 — -2
cm 20:3 ‘jlz £ 2e? F(-m-j,1-m;§).
(2n)” ((~m!))"(j+m)!
-1tn¢+k3z+ct.)
.e , = Jsmso0, {3.29a)
1/2 ! —5
20 (m+))! 2
= £ e F(-j,m+1;g).
e len? [m!}zj!]
-1 (n¢+k3:+ct)
.e , O0s3sm=ow (3.29b)

The solutions (3.29) are orthonormalized already.

Finally, concerning the Minkowski case Q = 0 = tz, the solutions can bhe

derlived as the 1limit of the solutions of the hyperbollic case nz < 82, when
£->0. The 1limit procedure 1Iis similar to the previous one for
Som-Raychandhuri metrics, making Q =0 flrst. Only the continuous energy
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solutions of the hyperbollc case @ < 2 will contribute, and we have
-l(n@lk.z-l-et)
¢ =J [v’e’-nz-kg r] e 3 :

-w < m < w, where J_ are the Bessel functions of the first kind. They are
regular at r = 0, as expected, since they were obtained from solutions with

this property.

4 Comparison with Classical (Gecdesic) Motlon

We now discuss the analogy between geodesic motion of point test
particles and the scalar fleld solutions obtained in Section 3. A detailed
study of geodesic motion 1in Gédel-type spacetimes was performed by Calvio,

Soares and Tiomno 61 .

The analogy 1s established by reproducing the results
of Ref. [6] through the correspondence of the continuous parameters of the
geodesic motion with the quantum numbers of the solutions of Section 3. We
adhere to the same notation and definitions of Ref. [6], except that we
rescale f° to 0°/4 and take the mass of the particle equal to M.

In the sense of Lagrangean mechanics, the coordinates t, ¢ and z are

cyclic, implying the exlstence of the integrals of motion

[Pt' P¢, Pz] (4.1)

The constant B - that characterlzes bounded or unbounded geodesics for the

hyperbolic family with & > 0% > 0 - is defined!

Cf. Eq. (40) of Ref. [8]. It 2colncldes sith the parameter ¢ also defined in
Eq. (31) of Ref. [6] for the cases £ > 0.
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With the correspondence

P, & n
L
P o k (4.2)
z 3
Pt - & ,
and consequently
P, 2
— N e——n -1 (4.3)
22

the analogy ls established completely. Indeed from (4.3), (3.17) and Ref. {6l
it follows that geodesic orbits bounded (unbounded) in r correspond to

discrete (continuous) positive energy solutions. Also the condition

tz(M2+k:) 1/2
2 between discrete

n" - 1=0 (defining the 1limit energy ¢ = |——
2 -

and continuous energy levels) corresponds to the geodesic deflned by
7 =« =0, limiting bounded and unbounded geodesics.

The above results clarify and justify the choice of the boundary

conditions {3.11). Indeed a detaliied examination of (3.11) shows that it

implies n>-1=0 as defining not only the limlt energy between discrete and
continuous energy solutions but also, through the correspondence (4.3), the
1imiting geodesic between bounded and unbounded classical motion.

Furthermore the spacetimes with £ s g? [that implies n®>1 and
2
Pt
=" > 0] admit only discrete-energy solutions and geodesics bounded in r, as
12

shown in Section 3 and Ref. [6]. In this case, the range of the quantum
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number m as well as the range of its classical equivalent P¢ have a lower
and/or upper bound. Using the correspondence (4.2) we can show'®!) that the
continuous classical interval of y contains the same integer values m as in
the quantum interval. For example, in the hyperbolic case 92 > Lz > 0, the

classical Interval is given by

QPt Pt
Pﬁ: -E*’ﬂﬁ.m] (4.4)
while the quantum interval,
m: (-], =),
Using {(3.15) we may express J = EEE - (n;l}’ and using the correspondence
28
{4.2) -~ (4.3) we have
2
0<-j-[-°i2+ n21<%. (4.5)
2L

From (4.5) it follows that (-J) is the smallest Iinteger contained in the
classical interval (4.4).

5 Dirac Test Flelds

Here we extend our previous analysis to a Dirac field coupled to the
gravitation of Godel-type models, In the context of Hehl ‘s non-propagating

torslion theory“’ZI .

Gédel-type spacetimes in Hehl ‘s theory are discussed in
Section 2, with a Weyssenhoff-Raabe fluid Intreduced as physical source of
spacetime curvature. We also assume here that Dirac fields do not interact

with any Maxwell fileld (possibly present also as source of curvature).
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Contrary to the scalar field case, the Dirac field § couples directly to
the torsion of spacetime, via the spinorial connection, and the problem in
question is therefore perfectly fit to Iinvestigate the simultaneous effect of
torsion and matter vorticlty in the physlics of particle fields, as partially
discussed in Ref. [22].

We Introduce Dirac spinors from the point of view of the tetrad

formalis. For a general review see Ref, [23]. We choose a tetrad basis

(e'"’(x)) such that the metric is expressed

(B)

_ A
= e (xle (:vc)nlLB (5.1)
where n‘a is the constant Minkowski matrix124]. The Lagrangean for Dirac
four-component wave function with mass M 15[251
L = vg[5(3r0,p - Dgn'y| - W] (5.2)
In the present formalism 7“ are the constant Dirac matricestzs] and

a = w+ 10, where 70 iIs the constant matrix. The splinor covarlant derivatlves

are given by

a

D‘w = ema“w + r‘w (5.3a)
- u —

D‘w = e(‘)auw - er {(5.3b)

where the spinor connection I‘A has the form

1 _ B C
F‘ = E[rac‘ th“lr v . (5.4)

Here th‘ is the contorsion tensor (1.3) - (1.5) expressed in the basis
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(e“’), and Tpes 2T€ the Riccl rotation coefficientslz?l

(M].

assoclated to the

basls (e

From (5.2) Dirac‘s equatlon is given by

[11‘[1)‘ + % xm“] - ]w =0 (5.5)

We choose for (2.1) the tetrad basis

=D (5.6)

As discussed Iin Section 2, the source of spacetime curvature is a
Weyssenhoff-Raabe (cf. (1.4} - (1.9)) with spin vector (constant and parallel
to the vorticity field) and contorsion tensor given respectively by {1.7) and
(1.5b). The maln motivation to use a Weyssenhoff-Raabe fluid as source of
curvature is that we want a class of models which encompass not only torsion
fields but also matter vorticlty, and for which class we have the limit of
Riemann-flatness (flat spacetime metric plus torsion field). Besides, a
Weyssenhoff-Raabe fluid is a physically suitable description of a fluid with
spin distribution and matter vorticity. Dirac matter would not generate such
a class of background geometries, and indeed a Weyssenhoff-Raabe fluld does
not encompass Dirac matter. Thls presents however no difficulty because the
Dirac flelds considered in this paper are test fields on a given background
spacetime. In case of a pure torsion field it is possible to use a totally
antisymmetric torsion generated by a constant background Dirac fleld. The
results in this 1imit are simlilar to the case Q = 0.

Using (5.6) and the contorslion tensor given by (2.5b) - (2.7) Dirac’s

equation now readslzs]

1 ¥ - {;r"’[}:‘u1 + zzuz] + 2|C + %(n-ks}]} v = Hy (5.7)
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with the momentum operators given by
a idD H3 ia __: 8
M=l g bar: % "'Dat DL lam: (5.8)

and

. _ s 35
C=vm + Mry (5.9)

The operator C is a constant of motion with respect to the Hamiltonian defined
by (5.7), namely,

f[C,Hl =0

Choosing ¢ to be simultaneous elgenstate of n, and C (na is also a constant of
motion, with eigenvalues P3) we obtain from (5.9)

Ew = - @ +P: v e=1%1 (5.10)
The (two-valued) constant of motion E corresponds to a trlvial symmetry in
Minkowski spacetime, Involving the longitudinal motion along a glven
direction, the z-axls. It ceases to be trivial in the present case because
the assoclated degeneracy is ralsed by the gravitatlonal coupling of the spin
of Dirac particles with matter vortliclity and/or spacetime torsion (directed in
the present case along the same z-axis). The role of this symmetry is
important in the coupling of the spin of Dirac particles with matter vorticity
and/or spacetime torsion. Thls symmetry, and the corresponding integral of
motion, are trivial in Minkowskl spacetime, connected te the longitudinal
motion of the system with respect to a glven arbitrary direction. Introducing
now matter vorticlty and/or torsion flelds along this direction, the symmetry
ls preserved but the degeneracy In the energy spectrum is raised. Later on we

{28,29]

will show that, by a Foldy-Wouthuysen transformation we can show that -
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for low values of the momentum L C can be interpreted as proportiocnal to
the projection of the spin of the test fleld along the z-axis. For high
values of n, or M =0, C is proportional to the helicity operator, and we

have

e = L sign [Pa] (5.11)

where L 1s the elgenvalue of 75.
We then select simultaneous elgenstates of C, of the Hamiltonlan defined

171 @

by (5.7) and of the global momenta defined by the Killing vectors F

8
and rr ik described by

y = A(MI‘J e-l(upopazwt)

2(r) (5.12)

where th alf-integer n Iis eligenvalue of momentum operator 14/8¢, and

e h
000

A= ? é g . Condition (5.10) requires that the two component spinors

001

(= i

¢ and m have the form

_ 1 - i
¢ = f{r)[’,J , g(r)[v_] (5.13)
where
M+p2
g = mter o (5.14)

Under (5.12) and (5.13} the second-order equatlion resulting from Dirac's
equation 1s completely decoupled for each component. The solutlions of (5.7)

vhich are regular at r = ¢ have the expression
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1
7, 17_(8-K]u’(x)
¥ =A 1 exp[-i [ct+m¢+Psz]] (5.15a)
L(2m+1)a_ (%)
forme 1 and
2 ]
1
Ly {1-2n)8+(x3
¥ = A '{ - exp[—i[et+m¢+P3z]] (5.15b)

7 i{e+K)B_(x)

for m = -~ % . We have denoted

K = evﬁpi - %[n—kS) . x = cosh2tr,

and

fic 1

. 2 2

a, = (x2-1) @44 2l F[a. b, m+l ¢ %; 1%"] (5.16a)
T
22

8, = (x2-1)" @074y 28 F[l_—a, 1-b, 1-m ¥ %; 15’-‘] (5.16b)

[13]

where F(a,b,c;y) is the hypergeometric function , with the parameters

+ B
2

+ B
2¢ 2

2t

_n
2I

0N b=

2 .2 2li/2
[“ 'f e + K—z] (5.17)
¢ ¢
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Positive and negative energy solutions are related by the symmetry

[T/ .'qzw.. In particular, for the sets (5.15a} and (5.15b) we have

\b[e,m,kS] = o-x{"w[-e, -m, - Ps] (5.18)

1
—

2

[ ]
where o = 1 if £ > 0, and o = (-1) if £ < 0. We note that in the case of

neutrines (M = 0) L » - L under (5.18) because although 15 does not change
sign, its eigenvalue changes under (5.18).

On the space of solutlions (5.15) we introduce the operators

J,=L,+S (5.19)

% 4

where L:t are the operators (3.8) of the algebra of angular momentum assoclated
to the scalar fleld, and

S, xte = (5.20)

ey B_+i3_] (5.21)

Thelir effect on the set (5.15a), that is, for m = 1/2, is given by

Jyle,m) = (2mn+1)y(e,m-1)
Jte,m) = - 5200 yle,me1) (5.22)
Jaw(e,m) = [m + —95 e]wte,m)

28
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The effect on the set (5.15b), that is, for m = - 1/2, is derived from (5.22)}
by complex conjugation and the use of (3.9} and (5.18) - (5.21). We remark
that J*¢(m=-1/2] ~ Y{m=1/2), J ¢(m=1/2} ~ p(m=-1/2).

These relations make possible to span the whole set of solutlons (5.15)
from a given solution, by successive applications of J+ and J . Analogous to
the scalar field case, they will be useful to normallze the solutlons.

Defining

J = [J + J ]/2 y J = [J -J ]/21 {5.23)
1 + - 2 + -

we have that (5.21) and {5.23) satlisfy the algebra of angular momentum, and
the second-order equation resulting from Dirac‘s equation is an elgenvalue
for the square of the total angular momentum, resulting

2
| [(Jlla R (Js)z]\b(c,n] =271 yeum) (5.24)

for the set (5.15). Normalizable solutions must obviously have n? = 1, as we
shall see.

We introduce on the space of solutlons (5.15) the scalar product

<w[e’,m’,P3]|w[e,m.P3]> = JV:E w[c’.m’.P;] W(e,m,PS]d4x (5.25)

where the domalin of integration 1s the domain of definltlion of the coordinate
system in (2.1), and we will use (5.25) to normalize the solutions. The
normalization integral (5.25) is well defined by the followlng arguments.
Let us conslder the local classical Dirac current

j(A) = ﬁr‘¢ = e;"(x)awa(x)¢. Its zeroth component J(O’ = y'y is the local

number density of fermions. As expected J(O) transforms as the zeroth
component of a Lorentz vector with respect to local Lorentz tranformations,

and it is a scalar with respect to coordinate transformations of the
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spacetime. The local number J‘nl#-g d‘x 1s thus a scalar, and integrated over
a glven volume of the manifold yields a positive definlte quantity which is
coordinate invariant.

The operators J1 and Ja’ defined in {5.23) satisfy

<P

Jg> = - <Iele> Af £>0
(5.26)

Wy = Jycle> if £ <o,

a=1,2, We note that relations (5.26) hold only for the subset of (5.15)
that are normalizable under (5.25). Since J1 and .J2 are not Hermitlan 1if
£ 0, it follows that the square of total angular momentum operator > {cf,

(5.24)) may have negative or zero eligenvalues (n® = 1), related to continuous
energy solutions, as we shall see,

The boundary conditions to be adopted for the solutlons are that Dirac
fields (which are test flelds and do not contribute to the curvature) are

finite perturbations at any spacetime point. We impose

tmy'y =0 , if >0 (5.27a)
LIV 2
53@1 yy=0 , if £ <0 (5.27b)

The analysis and Implementation of the above conditions are basically

analogous to the scalar flield case, as to perform linear tranformations“sl on

the hypergeometric functions, etc. In the 1light of these similarities,
calculations are omitted. We deal with poslitive energy solutions only. The

corresponding negative solutlons may be obtained through the relation (5.18},

Hyperbolic metrics (2 > 0)

(1) For n° = 1, the boundary condition {(5.27a) implies
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ir (e-K)a ) (x) e-1(ct+-¢+p3z)
t(2m+)e ()

LI~ )

for % =m < w, and

87_[1-2m)3(+)(x} -1(ct+n¢+93z)
e

LSSy

1(e+K)B, _, (x)

for -) =ms= %. where

1/2
= (2) + 1)Q + [(nz-ez)(zju)2 + [eVﬁE+P§ - [9555]]2]

and
=
2 4 28 Qe 1 1-x
ﬁ(t} (x"-1) (x"‘l} F[m J*'?, m+j+1, m+1:§, T]
21 - 95512
2 ., ¢ 28 Qe -1 1-x
B(t) (x“-1) {x+1) F[ m-j, j+1 m-;;, 1 m¥z; 5
Here

J = half-integer = -~ %

(5.28a)

(5.28b)

(5.29)

(5.30)

The solutlons are said to have a discrete energy spectrum, in the sense of

(5.29), and are normalizable since they satisfy also i&g V-g w+w = 0. The
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complete range of m is given by
-jsm<m (5.31)

We obviously have J y(m = - j) = 0.

(1i) For n < 1, condition (5.27a) ls automatically satisfied. The range of m
is not restricted (-w < m < w) and the solutions have a continuous energy
spectrum.

It is easy to see that the only normalizable solutions (with respect to

the scalar product (5.52)) are those for which n’ = 1, that is, the discrete

energy solutlons.

From the expression (5.29) for the energy spectrum, we see that the term
{Q-kS)/2 1is responsible for the splitting of each energy level into a
doublet. These splitting effects produced by matter vorticity and spacetime
torsion are additive, due to the existence of the same constant of motion
(5.9) for Dirac test particles in both cases. This constant of motion
generates a trivial symmetry of the system in Mlnkowskl spacetime, but whose
assoclated degeneracy In the energy spectrum is raised by the gravitatiocnal
coupling to matter vorticity and/or spacetime torsion, producing the
above-mentioned split. In the Riemannian limit (S = 0) this splitting does
remain but it disappears in a Rliemann-Cartan spacetime with Q = kS. The
presence (or absence) of the splitting does not therefore imply the presence
(or absence) of torsion or matter vorticity. What matters is the simultaneous
effect of torsion and vorticity.

The splitting is present even for the energy levels in the continuous
region. Although not observable, 1t has the effect of doubling the number
density of states. This wlll be easily seen when we consider the

Foldy-Wouthuysen representation of the solutions.

The above dliscussion is integrally valid for s 0, as we will see from
the energy spectrum for those cases.

The conditions (1) and (ii) for discrete and continuous energy can be

reexpressed in terms of the cosmologlcal parameter 2 and 82:
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(1) &% > £ (this case includes Gddel ‘s geometry)

2,.,2 .2
- if :2 = £—££——5—l, discretie energy;
a®-e?

- continous energy, otherwise.
Unlike the scalar field case, we have here a contlnuous energy region lylng In
the lower part of the spectrum.

2) =8
- if Kz = tz , discrete energy;

- if K? < tz ,» continuous energy.

(3) o < £

2 £2x%-t%)
2?

- if ¢ s discrete energy;

- continuous energy, otherwise,

The conditlons supra, (1) and (3), impose restrictions on the values of
J in the spectrum (5.29). Such restrictions ensure the reality of (5.29).

The normalization of the discrete energy solution (5.28) with respect to
(5.25) can be performed in a manner analogous to the scalar fleld
case, Starting from the normalization of ¢(m = -j) and using the operators
(5.29) and their properties defined in (5.23), (5.26) it results

1+ 2o

> = eolasdzeez b x

3

()1 (3] *(Eo4)
4% (m+J)1 [%‘5-25-1] r[‘;i;g- j+m]

<y v

e!-’P;I

8, 8(e'-€)8 [P;—PS]



CBPF-NF-014/91

-33-
3
forESm < o, and
1-:.-%
(wc'm'Palwenpa> = [2u)3(1+1f)23(e+K)2 ¢ x

(jom)! [[%-I] |]2r[‘:—:~'3-"‘] 5 a(c'-e]a[l" -P ]
o () (F2r)r(Fo3) N

1
for - y=m = 5-

Circular metrics (82 < Q)

The analysis in this case must account for the solutions of the 2 = 0

limit. In what follows we denote A2 =-£. on (5.15) we impose the
boundary condition (5.27b), and obtain the set of Independent solutlons
(positive energy)

L

. 11_(c-K)a+(x) -1tct+-¢+paz)
e . {(5.32)
A(2m+1)e (x)

L e . (5.33)

¥

1
7 Ay (1-2a)8 (x) =1 (ELems+P_z)
* = A * - + 3
I[ 1(e+K)B_(x)

for - Jsms= - % : and
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1
7 |1y (e K)o (x)| -t(et+np+r _2)
= Al T 1 v e 3 (5.34)
y h{2n+1]¢_{x)
for jzm> Efl ¥ 1 Here
Az, 2
j = half-integer % ,
2 1/2
e = (25+1)0 + [(2J+1)2(n’+73} + [ew/‘i;ﬂ’: -% {n-kS)] ] , (5.35a)
2 172 :
g, = - (2J+1)0 + [t23+112)(n“+il + [enAlE-l-P; - % (n—kS)] ] ) (5.35b)
and
-
ui(x) = [l—xz) Y (1) A F[m+J+1, n—j-gg, m+lt%; 1%§
_(&d, - EEE*%
8,00 = (1) * (1) F[—m-J, J+1-n+%. 135m; %]
981:1
2 2:11 i aaz 2 n‘: 1 1-x
¢t(x} = (1-x") (1+x) F[m—J. J+1+n——;5. 1iz+m; 'TTJ

In the limit Q = O, A% 2 0, the set (5.32) disappears, while (5.34) is
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cruclal to complete the solutlons in this limlt. The energy eigenvalues
(5.35a) and (5.35b) become equal, and the range of m is given by -j s m = j.
Contrary to the scalar fleld case, the solutions (5.33) - (5.34) in the limit
1 = 0 cannot be expressed as assoclated Legendre polynomials.

The normalization of (5.32) - (5.34) is glven by

Qe
Z2mh] ——
2

3

[J+§ a»-]]2 ——+J+1-n

8(e’~e}é(p,-p,)

a'n
[ n—2-»2,}4-1] (j+m)ir Eq- J+1]
A Al
1 {le 1
for 5 = m < = -5
A
1-2m4—
3.2 A2
<¢'e.,.p.lww3 > = (210)° (1+47°)2e(e+K)2 x

(23+1) (J+m)! [[%_m] ’]2‘“[;985*-1*%]

Baset) orpr (S
A

6_._8(::' -e)stp's—ps)

1
for-jslms 5

Qe
1-&#——2'—
¥, > = @o*0+d2e (e K2 P x

E_mP
1 3

<

c*'m'p’
1 ])3
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(2J+1) (J=)! [[%m] !]2r[_?+ J+g.]

Qs1 i 951 5.,.5(8'—£)6(p;—p3)
[-—+ZJ+1] (I l"[-—-—-—-+j+1+m]
l2 2 Aa

Qci
forjzmz—z—+

A

BN

Som-Raychandhuri metrics (22 = 0).

We use the same limit procedure, as in the scalar field case, on taking
£ 0 in (5.28) - (5.29). Only discrete energy solutions will be obtained,

1 e

7 ir_ (e -K)a: () -i(ct+.¢+p3z)
F(2m+1)u (€)

for g =m < o;

1 fn?v_(l-Zm)B\\(E) -1 (EtengsP _2)

e

)

S |1v_tesis_@)

for - Jsms= l. We have denoted € = Qer® and

2

172
2
e = Q(2j+41) + [[2J+1)202 + [ +p§ - %(n-ksl] ] , (5.36)

“:(6) = & e F[-—J+-12—, n+1t%; E]
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2nt) &

a2

B &) =& e [—m 3, 1+3- ~m; E]

where F(a,b;£) is the confluent hypergecmetric function.

For the Minkowskl case (limit_tz >0, 0 =0), we obtain

1
17_ {c-K)J 1 -i(et+-¢+93z)

T

sz * L] ¥
) f? :

~w < m < o, where Jv are Bessel functions of first kind and

K= eVﬁE+P: + %E

The curvature effect on the Dirac field is contained in K. To see lts effect

on the energy levels, we make Q = H =0 and D = r in Dirac‘s equatlion (5.7).

Afterwards we perform the unlitary transformation U = cos% - 12351n%, followed

by a coordinate transformation to Cartesian coordinates. Dirac‘s equation

becomes

o - [o(et, » ) + 2[e 5] e

where the momentum operators are given by

P = « § «ere
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As the energy and momenta are constants of motlon we can perform the

separation of varliables

v = yexpi-i(et + B.%)] (5.38)

where & is a constant four spinor. Choosing ¥ to be eigenstate of C, the

number of independent components of a reduces to two,

¢ 'f'o 1
wo
G = 20 T [iM + eﬂﬁ +P§ I/P3 (5.39)
(RN T
0
| T, J

Substituting (5.38) amd (5.39) into (5.37), we obtain a system of algebrailc
equations for the two independent spinor components wf and w:. The

compatibility condition for this system gives
_ 2
=P P [e\/{lE+P: + % kS] (5.40)

We see that If S # 0 we have for a glven value of momenta a splitting of the
energy levels into two levels, one for each value of the quantum number e,
analogous to the previous cases where matter vortlcity was also present. The
energy spectrum {5.40) 1is continuous, and the splitting is therefore
unobservable although it has the effect of doubling the number denslty of
[30] and

{(the first for 3 = 0) 1ln the approximation of Rlemann-flatness and a

states. A result simllar to (5.40) was also derived by Kerlick
[311
Rumpf
totally antisymmetric constant torsion generated by a background Dirac fleld
{matter vorticity is not conslidered). They did not notice, however, the

existence of the constant of motlon (5.9), responsible for the split.
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Expression (5.40) suggests that the split of the energy levels occurs
even at the continuum region of the spectrum appearing in hyperbolic

geonetrics (22 > 0). This is in fact true, as we shall show by introducing a

[28.29]

Foldy-Wouthuysen representation of the solutions,

[28,29,32]

Foldy-Wouthuysen and Cinli-Toushek Representatlion of the Solutlions

The purpose of this topic 1s to glive representations of the solutions
(for the low momentum and high momentum limits) that exhibit clearly the
physical meaning of the constant of motlon E.

Let us start from the original Hamiltonian (5.7)

H=P + z’,[c + %m—xs}]
where we have denoted P = 15[211t1 + 2?12], and consider the following unitary

transformation

(5.41)

where ¢ is a real parameter to be speclficed for each case.

1) FW transformation
The parameter ¢ in (5.41) 1is specifiled by o = % arctg(-P;/H],
- % < chign(Psl < 0. This transformation diagonalizes the constant of motion

-~

C, namely

¢ =ucut = \/sz: L2, (5.42)

and from (5.10) we have

7LV = ey (5.43)

where ¢' = Uy. The transformed Hamlltonian is given by
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H =P + za[ﬁzwz 72 + % (n-ks}]

Since 19 and 23 commute with P and 1923 1s a constant of motion, by a further
FW transformation the Hamiltonian (5.43) is dlagonalized to the form

1/2
H® = [P2 + [VE-&P: . %(n—ks)roza]z] 10 _

{(5.44a)

where P2 = uf + uz - 12? nl,uz . We remark that the constant of motion C°

commutes with the latter FN.transformation, and we have from (5.43) and (5.44)

2 1 172
Ry o= [P2 + [e P, - E(n—m:s)]z] P = ey’ (5.45)

The sign of the energy is given by the eigenvalue of 19, as usual,

The transformed solutions y+¢ obtained from (5.15) are eigenstates of Pz;

In partlcular for the discrete energy solutions its eigenvalues are given by

P? = 2(2)+#1)(0)e|-(J+172)F%). Thence it follows from (5.45) that the
splitting effect is general, occurring also for the continuous energy levels,
and doubling the number of states density in the continuum region.

From (5.42) and (5.43} we have that - in the low momentum limit - the
quantum number e is the projection of the spin of the Dirac field along the
Zz-axls, namely, along the direction of the torsion and/or matter vorticity
fields.

2) CT transformation

It can be accomplished by (5.41) wlth the parameter ¢ defined by

=1 arctg ;—, with 0 < 2¢sign(P3) < n/2. The transformed Hamiltonian results

w .
2 3
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H =P + 23[-sign(ka)¢ﬁ+r': . %(n-kS}]

In the new representation 75 Is a constant of motion, with
e =, Li=1 (5.46)

where L is the chirality of y¢*. The operator 75 corresponds In the old

representation to

-sign(k_) .
vy —— 2 ¢ (5.47)
z .2
+P3

and from (5.1Q), (5.46) and (5.47) we derive
L=e slgn(ks) . (5.11)

As mentioned previously, the result {5.11) holds in the limit of high momentum

(P; >> M2] or zerc mass (M =0), that 1s, the 1limit where the CT
representation ls well defined.

From (5.46), (5.47) and (5.11) we have that the quantum number e - in the
limit of high momentum or zeroc mass - Is the projectlon of the spin of
the Dirac flield along the direction of the momentum .

Finally, we comment that the spinorial solutions - whether continuous or
discrete energy solutions - must also be in correspondence with the classical
motion of .particles with spin, as expected. This correspondence would be the
correct gulde to declde among the varlous equations of motion of particles
with spin in a curved spacetime with torsion, appearing in the

[33-35]

literature . We shall come to this issue in a future publication.
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6 Conclusions

In the present paper we examine the gravitational coupling of
Klein-Gordon and Dirac fields to matter vorticity and spacetime torsion, in
the context of Einstein-Cartan theory. We show that - from the theoretical
point of view - torsion and matter vorticity have lidentical effects on the
physics of particle fields (Klein-Gordon or Dirac). For technical slmplicity,
the geometry of the spacetime is taken to be the family of Gddel-type metrics
characterized by two real parameter {Q,tz). In the framework of Hehl's
non-propagating torslon theory, these are the simplest known solutions with
matter vortlelty:; the source of spacetime curvature is a Weyssenhoff-Raabe
fluid with spin vector constant and parallel to the vorticity field. The main
motivation to use a WR fluid is that ﬁe want a class of models which encompass
not only torsion but also matter vorticity, and for which class we have the
1imit of flat spacetime metric plus torsicn field.

A complete set of sclutions is obtalned - for both Klein-Gordon and Dirac
equations - that can be generated from a particular solution by successive
applications of angular momentum operators derived from the Killing vectors of
the spacetime. Boundary conditions are imposed, connected to the test fleld
character of the set of solutions. The energy spectrum is derived there upon,

and we distingulish for each class of Godel-type metrics:

1) if £ < 0 (circular case), the energy spectrum is discrete, given by (3.20)
and (3.23) for Klein-Gordon fields, and (5.35) and (5.36) for Dirac fields.

2) if £ =0 (Som-Raychandhuri case), the energy spectrum 1s also discrete,
given by (3.28) for Klein-Gordon flelds, and (5.36) for Dirac flelds.

3 if >0 (hyperbolic case) we have to distinguish:

(3a) for metrics such that n® < tz, the discrete energy levels are given by
(3.15) for Xlein-Gordeon flelds, and (5.29} for Dirac fields. The
energy spectrum presents also a continuum region in the upper part of
the spectrum. We note that this class of Gidel-type metrics
(0 < 0% < %) presents no closed time-like curves.

(3b] for metrics such that 0° = ££ the Klein-Gordon solutions have a
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discrete energy spectrum only, with energy given by (3.15). Dirac
solutions, under certaln conditions, may present a continuum region in
the lower part of the spectrum.

In general the reality of the elgenvalues of the square of the total
angular-momentum operator I1mply dlscrete energy sclutions. The elgenvalues
of the operater 18/8¢ (component of the angular momentum cperator along the
direction of vorticity/torsion) for continuuous energy solutions have no upper
or lower bound, contrary to the discrete energy cases.

The analogy between classical geodesic motion and Klein~Gordon solutions
is completely established. It follows that bounded {unbounded) geodesics
correspond to discrete (continuous) energy solutions. The solution with limit
energy between discrete and continuous energy levels corresponds exactly to
the geodesics limiting bounded and unbounded motion. This correspondence is a
guide to choose the boundary condition (3.1l1a) as the correct one.

Matter vortlcity and/or torsion flields split the energy spectrum of
Dirac particles iIn the same manner. These effects are additlve, and result
from the existence of the same constant of motion for both cases. The
constant of motion generates a trivial symmmetry of the system in Minkowski
spacetime, but whose associated degeneracy in the energy spectrum is raised by

the gravitational coupling to matter vorticity and/or spacetime torsion,

producing the above mentioned splitls?l. The split effect is general: for
discrete energy levels we can see Immedlately from the expression of the
energy (cf. (5.29), (5.35) and (5.36)}, while for the continuum region
it can be made explicit by a Foldy-Wouthuysen transformation. Although not
observable, the latter has the effect of doubling the number of states
density of the continuum.

In the light of the results of this paper, two points remain to be
examined for Dirac particles:

1) the effect of spin precession, occurring In the presence of torsion“n],

and also in a background with matter vorticity[a'w]. the precession being
about the torsion/vortlicity fleld direction. If terslon and veorticity are

simultaneously present and aligned (as in the present case) the effects are
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expected to be additive and cancelations can possibly occur;

2) the correspondence between Dirac field solutions of Section 4 and the
classical motion of particles with spin, that would be crucial to decide

among various <classical equations of motion of particles with spin in a
curved spacetime with torsion.
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