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ABSTRACT

Considering (2,0)-supersymmetric non-linear o-models defined
over Kihlerian coset manifolds, we discuss the gauging of the
isotropy and isomeiry groups in ¢(2,0)-superspace and present the
action coupling these o-models to the (2,00-Yang-Mills
supermultiplets.
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Supersymmetric (p,qQd-like o-models defined in two space-time
dimensions { 1,2 ! may have an important application to conformal
field theory. Actually, under specific conditions on the target
space geomelry, a two-dimensional non-linear o-model will define a
conformally invariant field theory: supersymmetric non-linear
o-models defined on Ricei-flat Kihler spaces or hyperKihler
manifolds [ 1,3,4 1 constitute an important class of conformal
field theories. In particular, €1,02 and (2,03 heterotic o-models
with conformal invariance have been extensively discussed in
connection with the problem of superstring classical
configurations { 1,%5,6 1.

Bearing therefore in mind the Intimate connection o-models
have with conformal field theories, we would like to exploit
certain aspects of the former expecting to provide new examples of
the latter. For that purpcse, we draw our attention to the issue
of gauging o-model isometries [ 7-12 1 and carry out the
consequent coupling of o-models to Yang-Mills supermultiplels. We
contemplate a C2,0)~supersymmetric o-model described directly in
(2,0)-superspace [ 13-16 ] and discuss the gauging of the target
space isoiropy and isometry groups, while working in terms of
C2,0) matter and Yang-Mills supermultiplets ([ 15,16 1. The
resulting gauge model might be expected to give an example of a
new conformal field theory,

We begin by fixing our superspace algebra and notational
conventions. Next , we give a brief discussion on the '
2,00 ~superfields we shall be dealing with, including the
formulation of gauge theories and o-models in (2,00 -superspace.
Finally. we discuss and present the details of our analysis of the
formulation of a gauge-invariant non-linear o-model with global
C2,0) supersymmetry.

We consider our superspace parametrised by the coordinates
(x",x"; 8,82, where 8 ,5_ are complex Grassmannian variables,
which transform under the 2-dimensional Lorentz group as
right-handed Weyl spinors:

8= % C1ad &= _ cib
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where a 1s the real parameter of S0(1,1)., The 1light-cone
coordinates are defined by

X't = 1/-5-1 ¢x® + xM . caad x = #TI cx® - x'y . cZbd

The supersymmetry covariant derivatives are taken as:

D= —3— + i6_0 »  C3ad b = +ie_ 8, C(3bd
-~ a0

where

61—4- = 2 ++ ‘ o__= —-—?_""
ax %

They fulfil the algebra

<D ,D> = O C4ad : <D, B> = 216 . C4bd

L -+ -+ * -+

To obtain the pure matter supermultiplets, we need to

constrain scalar and spinor superfields according to

5+§ = 5.’\1'_ =0 , ¢S
0 that the &-expansions of these *"chiral" superfields read:

& = ¢OO + 8 n GO + 16 8 9 ¢00 e C6d
¥ = yw (x> + 8 FOd + wj_o“w_cm . 72

@ and F are complex scalar fields, whereas n, and y_ are left- and
right~handed Weyl spinors, respectively.

A manifest (2,00 -supersymmetric kinetiec action for the matter
superfields above can be written as [ 13 )

e _ 1 2 = - 1 2 T
S = T_[ d"x d@ _de [Ea__ﬁ CO__&T)Q] + -—é--[ d"x d@ 48 ¥ ¥_ , (8
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which in component fields take the fcrm#
M — -+

s = szx [5 D¢ -ind_n, -iyd v_+ -é— FF] . e

To introduce the (2,0)-Yang-Mills supermultiplets, we define

the gauge covariant. derivatives as below:

v =D - igl . C10ad vV = a8 - igl . C10bd
+ + + ++ ++ -
V =D +1gl, . <10 V__=4d8__ -iglf_ . C10dd

where I“A = r‘i‘ Ta » and the Ta's are the anti-Hermitian generators
of the gauge group G. The parameter g plays the rdle of a
mass-dimensional coupling constant.

Now, we set the algebra of the gauge—-covariant derivatives in
order to impose constraints and obtain an irreducible
representation describing a model whose component fields exhibit
suitable physical properties. Following Brooks et al. [ 15 ], the

constraints are:

<v .,V > = zgiv , Ci1.a0 (v ,v_3 = —-ig¥W , L €11.d0
+ o+ *++ + b -

(v .,V »=20 ’ Ci1.bd (v ,v_ 3 = -ig2 . (11. &
* + - -

(v,v 1 =0 , Ci1.¢c2
L

The first constraint is the well-known conventional one. It

yvields:

R | —- - =
r, =~ = [D+r'4 IS*r‘ ig {r" T, }] . 12>

The constraint (11.b) eliminates a spin-3/2 component field. With
the help of the Bianchi identities, it is shown [ 15 1 that there

#C)ur conventions are nw=d1agc—1.13 and €5, = -2t = 41,
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are only two independent field-strength superfields, namely W_ and
W_ . On the other hand, C11.c¢Dd Cor eq. (123D implies that I"H must,
be Hermitian. An additicnal requirement is that also I'__ be
Hermitian, in order that Lthe theory display only one gauge field (
16 1. |
The coupl ing between the ca,om matter and gauge
supermultiplets is obtained upon the covariantisation of the

action C8), which becomes:

S s - —£—-| d®x de de [ﬁ Vo g -cv B eaVQ] +
Matter-~gauge 2 + o+ - -—
+ 1—| d’x d& do W eav'il' ’ 13
=1 * o - -—

where V is a Lie-algebra-~valued real =scalar superfield and o is a
mass-dimensional coupling constant.

Considering that the matter superfields transform like
& = ez NS PTS) ¥ = o'W . C14bd

where A = AaTa is a chiral scalar superfield satisfying the same
chirality constraint of 2 and ¥ _, the gauge invariance of the

action (132 requires that V transforms according to

eV = ot g9V iA

15)
It is interesting to point out that the prepotential V acis
in such a way to change a A- to a A-representation of G { 17 1:

= ol® ca®Vay . cied cEe™Vy' = cEe®VreTh | C17)

ce®Vay’
The connection between the prepotential v and the
gauge-potential superfields F+ and F; becomes clear if we consider
that we can define
-aV,

v = o %D , c18d v =% 5‘eov . LoD

+ - . +

Consequently,
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r, = -ié—- e VD 0% : c20>
and, according to ref.l 15 ], this relationship enforces the
presence of a single gauge potential in the theory.

From the Hermitian nature of the connection I'_ , its gauge
t.ransformation must read as below:

o = L d_CA+ X + 1A +A,T_ 1) . cetd

The Yang-Mills action for the (2,00 gauge supermultiplet reads

S = -—LJ' d* d8 d8 Tr W W . cazd
a ) + * - -

Now, 11 is interesting to notice that, in a complete analogy
with the case of N=1 - D=4 supersymmetry, we can write down the
C2,00 analogue of the Fayet«Iliopoulos term:

S = I d®x de de T . ca3d
FI - - -

Its Abelian invariance is evident from the transformation law (2iD
and the constraints on A and A [ 18 1.

The raise of interest on the study of supersymmetric
non-linear o-models stems from the fact that they describe the
background field configurations for superstrings. Actually,
seeking compactifications of the Green-Schwarz [ 19 1 and
heterotie { 5§ 1 superstrings that leads to the presence of a
4-dimensional supersymmetry corresponds to searching for locally
supersymmetric co-model s that, for flat two—dimensional
supergravity backgrounds, exhibit N=2 C(or (2,23 and 2,00
supersymmetries, respectively ( 3 J.

Following the results of Zumino [ 20 ) and Hull and Witten (
1 3, it is known that the requirement of an extended supersymmetiry
for a two-dimensiocnal non-linear co¢o-model dictates geometric
restrictions on the o-model target space. In particular, (2,07 and

€2,2) supersymmetric models without Wess-Zumino term [ 21 ]
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require the o-model target manifold to be Kihlerian [ 22 1,
Considering the case of (2,0)-supersymmetiry, we take the
chiral and anti-chiral superfields, &I‘Cx;a.gb and er;6,§JE§t
respectively (i=1,2,....,n), and regard them as the coordinates of
some n-dimensional Hermitian manifold. In this case, the o-model

action written in (2,00 superspace reads [ 13,14 1:
S = - .1 d®x de 48 |k cz,. o 3 - Kcg. Po & . C24d
- +« +| i — v -

where the tLarget space vector l(i_C ¢.¥>, in the absence of the
Wess-Zumino term <(torsion-free case), can be written as the
gradient of a real scalar (Kihler> potential, KC&,3D:

,L=—".- K(G.?DEOJ(CQ,?) , (25a) K,a—",- KC&.E‘)Ea;Kca,Eb . C28bd

az" MY X
Making use of the 6,8-expansions for the superfields &' and

3". one finds that the component-field version of the action (24D

reads:

1 2. [ o s 4t . 1 MU ia i iyl
s, = Tj-dx[gija““¢ 0, ¢ + b 0 d'0¢ + gD ' +

+ C.C ] ’ ca6d

where we recognize the ordinary bosonic e-model action accompanied

by its (2,00-supersymmetric partners, and

D w=0_n+ I ' R a4t 27>
k1
g~ K -+ K- ., C28)
L) e ) It
b & K, - K, . . C29>

gt} stands for the metric, b”, is the torsion tensor and l"tj, is
the affine connection of the target space.

We shall contemplate here the torsion-free case, and tLhe
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Kihlerian target spaces will be taken as symmetric manifolds of

the form G-H. The generators of the isometry group G are denoted

by Qa Ca=1,2,...,dim G, whereas those of the isotropy group H are
specified by Qa Ca=1,2,....,dim H). We must also have that
a-a=2an , C30)

for we have assumed G/H to be labelled by n coordinates, Qi‘, and
their corresponding complex conjugates,

The infinitesimal transformations of the isotropy group are
linearly realised and act by matrix multiplication, just as on
flat manifolds:

s8'=122 ¢ Q) "j 8! . C31)

where CQa)i'j denote the matrix elements of the Hermitian
generators of the subgroup H in some n-~dimensional representation
and A® are global (x-and &-independent) parameters. As for the

isometry group, its infinitesimal action on G/H can be written as

&8 =A™ k &> | ¢32a>
and
oF =\ kB . €32bd
L% Qi

where k; and Fm are Killing vectors of the target manifold.
Exponentiating (32ad and (32b) ylelds finite isometry group

transformations that we write as

L G

g = & '=expCl, 0 & . C33a>
St —S 3’t=expCLk e 3.. » C33bD
with
Ly &"E[x"k; 2 .&‘] = &8 . <34
: az’

Before discussing the invariance of the action (242 under

isotropy and isometry transfermations, we can readily check, upon
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use of the chiral and anti-chiral constraints, that 1t 1is
invariant under the so-called Kihler gauge transformations:
KCE, 3 —» K'(3,%) = KB, &> + 0@ + ’ ¢35

where n(%) is a holomorphic function of the coordinates 3.

Now, an isotropy or isometry transformation induces a change
&K on the Kihler potential:

&K = 8K 5B + &K s . €36

In the isotropic case, it can be shown, with help of the so-called

Kéhler gauges, that K can always be chosen in such a way that

6K = O . C372

that is, the Kihler scalar potential can always be taken
H-invariant.., This ensures the invariance of the action (24> under
the lsotropy group. The same, however, is not generally true for

the isometry group. Considering the G-transformation given by
C(32a2 and (32b>, the variation 8K reads:

SK = x“[co_lo k' + ¢co'Kd k .—] = x“[n B + 7 cf)] . €38
L ot [~31% o ot

where the holomorphic and anti-holomorphic functions L and ﬁa are
to be determined up to a purely lmaginary quantity as below:

Ce KD ki' =n_ + iM C&;f) C309a)
i o a ot
and

COKd k - =7 - iM D . €39b)
o o [ }

The functions Ma are real scalars whose existence 1ls crucial
for the gauging of the isometry group [ 7,8 1, as we shall see in
the sequel. Therefore, from (38) and by virtue of the constrainis
on &' and 5‘. it immediately follows that the superspace action
C24> is invariant under global iscmetries.

Now, a relevant issue in the framework of
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C2,0) -supersymmetric o-models would be the gauging of the isometry
group of the target space { 7-12 ). This amounts to studying the
minimal coupling of the (2,00-c-model to Lhe 2,00 ~Yang~-Mills
supermultiplets. The eventual importance of such a study appears
in connection with the dynamics of world-sheet gauge fields, which
according to the works of ref. [ 23 1}, might play a significant
role in the understanding of the breaking of the large string
gauge groups to lower-dimensicnal simple groups, Another possible
relevance for pursuing such an investigation is in connection with
e-dimensional conformal field theories. We already know that
2-dimensional o-models define conformal theories provided that
some constraints are imposed on the geometry of the target space.
Now, the coupling of these models to the Yang-Mills sector might
Yield new conformal theories of interest.

To carry out the analysis in superspace, one has to draw the
attention to the fact that, rather than the metric, there appears
in the superaction the Kihler scalar KCE,%), which potentially
exhibits extra symmetries leaving the metric invariant. This fact,
as we shall explain below, requires the need for simultanecusly
gauging the Kihler invariance of eq.C(35) { @ 1. However, the four-
and two-dimensional cases differ in that the latter exhibits the
Kihler function K subject to a space~Lime derivative. Moreover,
the (2,00 case has an extra supersymmelry at play, and this ts
responsible for the different form of the action respect to the
N=1 - D=4 and (1,00 - D=2 cases.

The gauging of the isotropy group Cor any of its subgroups),
whose transformations now read

ottt C40)

5 > 3is
with A = A% x; 8,8 Q; and D, A% = 0, can be immediately performed
if we replace lﬂ by the combination

V)ﬂ . C41d

o —
& =3 Ce
i J

since this transforms as below:

EL — &’ = 8 e ) c42)

i 1%
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It is worthwhile to mention that V is Lie algebra- valued, V =
VaCx;e.a') Q& » and the generators of the subgroups we are gauging
are written in an n-dimensional representation. '

The replacement (41) guarantees that the scalar function
KCQ,E) is locally invariant once K(%,%) has been chosen to be
globally invariant. This is always the case whenaver the group in
consideration is at most the isotropy group. So, all we are left
with is the standard gauge-covariantisation of the derivative
o &%

. 8 — > Vv_g' =o0_3 —1gr? coa)")_ 2 C43>

Therefore, we finally get that the action
i 2 & i v
S = - ~=5— J d“x de dé [O.K('i.ibv 3" - o-KCE. BV & ] C44>
- -+ L —— 1 bk

is invariant under the local Yang-Mills transformations generated
by any subgroup of the isotropy group H. Notice that the
replacement (41> of ¥ by & takes place only in the Kihler
function, but not in the derivatives 0-.: and 0__?.

The next and final step would be the gauging of the full

isometry group G, whose transformations now take the form

2 — 'Y = expC Ly p 2 3, C45a)
Ii. — & . = @xpC L = ‘i. ’ C45b)
where
. E[A“k‘cn-——‘-’#_-. ] R C45c)
. o aﬁt .
Lig - = [K"‘ k OB -2 . ] , C45dd
with
5‘_!\“()(;6.'6) =0 |, C46a) DA %x;6,8 =0 . C48b)

In order to covariantise the potential K and express all the
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gauge varlations exclusively in terms of the superfield parameter
A?Cx;e.ab. in such a way to mimic +the cace of global
transformations, we propose the replacement § »——»p g by means of
the superfield V according to

i‘ = expCLl,,, > & = expciL, > F -, C47d

where the gauge transformation of V is fixed through the equation
below:

iL.., =~ L, - iL,, - L+ -
. V .k = o Ak e V.k o Ak C48a)
and
L e v 2, . C48b>
iv’ .k i o =— )
.1}
1"
Therefore, 3 transforms as
3 » 3 = C L > & C40a)
i % exXpt Ak P ’ a
which infinitesimally reads
&8 = A%x%;0.8 k_ . C49b>
LY Oty

However, unlike the gauging of the Iisotropy group, the
prescription of replacing ¥ by & does not yield a gauge-invariant
scalar KC&,3), for the symmetry group is no longer linearly
realised. Indeed, an Iinfinitesimal isometry transformation induces
on KC®,¥> the variation

~

&KCE, 8> = A® Cn, + Ngd R 500

where

oy
~ i -
Ty = CO° KO kaicib + mac&.i) . C51)

and
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s 2 52>

The isometry variation 6K computed above reads just like a Clocald
Kahler transformation and this is a direct consequence of the
existence of the real scalars MGCE.s). as discussed in refs. { 7 1]
and [ O 1].

The result (500 immediately suggests the introduction of a
pair of chiral and anti-chiral auxiliary superfields, ¥¢(3> and
IC¥, whose Yang-Mills transformations are able to compensate the
lsometry variation of K. This can be realised by introducing a

Lagrangian given by
2y = ok, B v_8' - o0y kea, B v_F' - arce> v_3t »
N t
+ o T v_§ . (53
which can still be rewritten as

£, = ot[ Kce, & - e - Fcdd ] v_a' -«

- o?[ KCg,8 - ¢ - Fedd ] v ¥ , C54)

where the covariant derivatives V___Gi' and V__Et are defined in

analogy to what is done for the bosonic ¢o-model:

v_a =o_8 -gr% k! ¢55a)
and
v 8§ 206 & - gr® Kk . CS5b>
. & _—— - [= 1%

Now, 1if the holomorphic and anti-holomorphic auxiliary
scalar superfields are so chosen that

L
CoLd> k, = n B ¢S6ad
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and
Uy o ~
€' Dk, =7 . C56b)
the combination KCG.sb - LCE - ?Cg)'] becomes an invariant and
the Lagrangian _.'L’z of eq.(54) is symmetric under local isometry
transformations,

The striking fact concerning the locally invariant Lagrangian
obtained above regards the need for the introduction of the
auxiliary superfields (& and ¥C¥). This is not surprising, since
a similar mechanism occurs in the gauging of N=1-supersymmetric
o-models in 4 dimensions. However, contrary to what happens in the
case of (2,0)-supersymmetric o-models, the superfields ¥ and ¥
drop out from the N=1-D=4 action. The basic reason for the
persistence of the auxiliary superfields ¢ and ¥ here follows from
the presence of the space~time derivatives aq_&‘ and 0__5'i' in the
globally symmetric action. Though the target space gecmetry in the
cases N=1-Dz4 and (2,00-D=2 are the same, the action of the former
involves only the Kéhler potential whereas the action of the
latter displays explicit space-time derivatives. Therefore,
besides the scalar function discussed inrefs.l 7 1 and [ © ], the
auxtliary superfields ¢ and ¥ C(fixed non-uniquely from their gauge
transformations) remain in the (2,0)-D=2 action and no chirality
arguments may throw them away as it happens 1in N=1-D=4.
Nevertheless, since the réle of ¢ and ¥ is to add holomorphic and
anti-~holomorphic pieces to the scalar potential K, the metric of
the target space does not feel the presence of them both and we
claim that actions with different choices of ¢ and ¥ C(this is just
a superspace artifact) correspond toc the same component-field
ao-model action and describe equivalent conformal field theories
with non-compact gauge group.
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