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ABSTRACT

We developed an extended thermodynamical theory for con-
tinuous media with spin. New phenomenoclogical coefficients | with
definite algebric properties are necessarily introduced and the
time correlations fluctuations of the dissipative.fluxes are cal-

culated.
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1 - INTRODUCTION

Usually in the MlMterature™?

the pressure tensor of
a continuous media is considered as a symmetric tensor, as
consequence the orbital and intrinsic angular momentum are
conserved independently. In this case, the dynamical equations
of the intrinsic and orbital angular momentum are completely
decoupled and don’t contribute to the entropy production:
Grad>’ was the first to obtain a more general equation of
motion and balance of energy from which follows the possibility
of an antisymmetric character of the pressure tensor. This
leads, in the thermodynamical point of view, as a consequence,
a new viscosity coefficient which is due to the exchange of
angular momentum between the rotational hydrodynamic field and
t.he intrinsic Cor internal angular momentum of the
constituints of the continuous media. This new contribution has

been developed latter by Mei xner“’, Baranowski and

Romot,wskytsj. In these works the angular momentum intrinsic and
orbital aren’t separatelly conserved, a new dissipative fluxe
arise from the irreversible exchange between the two angular
momenta and is known by rotational viscosity.

In this context there is a new object named couple-
stress tensor. Such tenzor specifies the state of internal
couples of the continuous media. It has been shown> that the
irredutible parts of the cuple-stress tensor are interpreted

like thermodynamical fluxes that are conjugated with gradient

of the field of internal angular velocity.
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In our work we apply the new formulation of non-
equilibrium thermodynamics, currently known as extended
irreversible t.hermodynamicstm, to this enlarged situation. The
first =section is devoted to obtain the equations of extended
irrever=ible thermodynamics and his basic features. In the
second section we apply methods of autonomous dynamical systems
in order to chtain some restrictions on the new
phenomenological coefficients. The last =section 1 devoted to
obtain supplementary information about, the macroscopic

parameters provided by fluctuation theory.
2 - EXTENDED IRREVERSIBLE THERMODYNAMICS

A one-component system depends locally on the
equilibrium wvariable wu, the internal energy per unit of mass, v
the specif volume, the wvelocity ¥ and the dissipative fluxes a,
T, n,u_, respectively heat flux, bulk viscous pressure and the
traceless symmetric shear tensor. If the one component system
has intrinsic spin, we need to add the angular momentum spin
tensor Si.j and the couple-stress tensor bijk' In this way a
more general equation of motion is obtained from which follows
the po=ssibkbility of the antisymmetric character of the pressure

1553
tensor described by si 7'

i k
In the classical description of fluid mechanics, the
evolution is governed by the well known balance equation of

momentum, mass, energy and angular momentum p.

PV, = —5 <2.1>
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_ 3 -
ov = 7 22>
axi.
ou + g;‘ - - Cp + ::: - R <v"v;;ij - [si,jk g: -
- 20, ] - Q= ;’:- -Q z: -Q, « v & > €2.3>
P+ ag:gik =2c, a7 2.4>

In writing these equations we use the following usual

decomposition of the pressure tensor P_ij:

[ {q)
- +
Pij - pé_”_ + éi.j ﬂ'ij + sijk T 2.8

where p is the thermodynamic pressure.

L]

with the tensor Qtjk = - Q. we can define the dual

jik

tensor:

2.6

Then the dual tensor Q * can be splited on his irreductibles

parts as follows:

+
ij - 6jk Q+ 6_ilc sjlci. Qi 27>

where the symbol » means:
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The intrinsic angular velocity is represented by Qi.j or its

dual Q_t, where:

si.jk ij . 2.9>

...
N

In the model in consideration, the intrinsic angular

1
velocity is related to the spin vector St - 3 ti.jk Sjk by:

S =1 O €2.10>

where I_LJ_ is the density of momentum of inertia.

The classical description of fluid mechanics is not
self-contained since the evolution equations {2.1>, 2.2),

€23 and (24> Iinvolve new unknowns parameters as p, a, T,

{o

ﬁij, nk and Qi.jk in terms of the basic variables and their

f1,3]

spatial gradients Oumr purpose iz to propose a theory

which goes beyond the classical description. This is done by

considering the dissipative fluxes qi, T, ™ ., ﬂ;m and Q'jk’

(8]
appearing in the balance egquations {2.1>, - {2.4> as
independent. variables. It is expected that the results of
classical theory will be recovered as a limiting case. In this
formulation we need +to find evolution equations for the
dissipative fluxe=x. We do not. adopt the local~equilibrium

assumption, so the entropy of the system depends locally on the

classical variables u and v and also on the dissipative fluxes.
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In this way, the following expression is valid:

as s A os o5 .
it VR TR N T e T
ij
os o o= o= os
+ PR drr, -l--oEdQ-!--aEt-dQL-r—-dQ“ 211>

We define a non-equilibrium absojute temperature T and a non-

equilibrium thermodynamic pressure p by:

= T (u, o, q, ﬁtj, n:m, Q Q, 611_) <2.142ad

e

-4 [
= Tp(uw o q,m R, 1% QQ,9). <2.12b>

4l

The remaining partial derivatives are denoted as:

os -4 -
aqt m T e (ai q + o Q_‘) (212cd
o= -1
3 = T wan 2A2d>
2 - T v, w® 212e>
o'
1S
95 o T ba B (2421
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- 6 -
o= -4
3Q = T va Q 2A2g)
as -1 -
"Q;, = T » (c::u‘:s Qi. + do qt) €2.12hd>
25 oot e B €2.120>

S ij
i
We restrict ourselves to Hnear terms, the a 4 = 0,
1, .., 6> are coefficlents that must be identified in terms of
physical parameters as will be done later.
The introduction of equations 212> into A1
vields the generalized Gibbs equation In order to exhibit the

entropy production, we need an expression for the entropy flux,

writing in linear approximation by:

1 =n3 213>
where 7 is a parameter that will be given later.

The most. general form of the entropy balance equation

is

pz + 9 3 mo. 214>

Considering the equations <(2.11), (212> and <€2.13),

we have the following expression for the entropy production:
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1 - . +1 « 2 b )
a--[ﬁo T]aq-l—r:x-l-q.i-l-ntj X_”,-!-Qx-l-

e & 61,' ’xij + 4% >0. 215>

The thermodynamics forces X, .., di, appearing in

€2.15> are:

*X = - 1 v, + o (2162a)
T | 3% an -10a
Y Oﬁo a!. hd aﬁ .
X = 3%, tea teQ €2.16b>
2° 4 V)u az o e
X,tj - - R + T (ﬂ'tj) 2.16cd
3 9.4 as 2
Xm= 5 + T Q 2.16d)
. H®. - 20 o«
X = - + + g (2.16ed
»
°X = - ......_afﬂ + = &> <2161
ij T T ij |
O, o c.[‘ a
R i e i3 <2.16¢)

In order to obtain the evolutions equations <(new
phenomenological equations) for fluxes we need to express the

X’s as funtions of the fluxes, thus up to first order we have:
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X = X
930
‘X. - a @
i 40 1
56
X =m g
ik S0 6;1:
]
X = a + a
v [+ 8] Qi. . ql.

2478

(2.17b>

(217¢

274>

{2.17e>

2A7LD

217g>

Substituting these expressions in (2.15) and assuming

3 = ,%, we obtain:

z L] 2
o = o+ a q_q‘,_+a 1 T+ Q + a T, T,
10 L 20 i) ij 30 40 i

a oo
+asoéjk65k+ainQt+(am+316)Q1qi_2°-

The restrictions imposed by the second law on

coefficients are:

L3

+

218>

these

2.1%

Finally, from equations (216> and (217> we obtain
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the following evolution equations:

=}

o ¢ V‘a
Tﬁﬂ-aoon*’ T

o AN
._2 (;; ). - oa 1 + 3
T ij 20 i T
2,Q 3.4
s .
T - a0 Q + T
% 3 v B
. Ecm - a 2 (VY - 20D
T 40 T
«w D
5y i
T (6;'1:) aso 6,,1: + T
q. q.
v s M v + [N
- N
&, Q,
where
a & - a o a o -
MewTCa -oad? i & 10 o ot 6
‘ a - a a a -
10 4 s1 4 11 %
a -1
S aT
5 Wxﬁ)i + o
- - -1
N = TG E, e )t | .
i — a7
T <v~.~z25:n_t + & 3%
L A

€2.205

2.21>

2.225

€2.23)

{2.24)

£2.255

227>

We have introduced many coefficients, which can be
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identified in physical terms astm:

1 *
2" TT P %" T 8T
a -1— ; O m o~ T 2 T
2o »nT 2 2 20
a -1—— 3 o m = T 8 T
30 kT ] 8 86 b ¢2.285
a -1 ; o wm =~ T & T
-0 an 4 4 4o
350-1-—— 3 = m T a1
£

where [, n and nr are bulk, shear and rotational viscosity
coefficients respectively. The other coefficlents k and # are
associated to the dissipative fluxes Q and Qij, respectively.
T T - T, are the relaxation times related to the
respective fluxes. The coefficientes of equations ((225) and
(2.27) are more complex due of the cross terms:

o = ~Ta T ; a = =-Ta * ; o ==--tTaT,; o =-T17a T
1 10 8 [ - T 1 1 a4 ] G o1

2.29>

where
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-3 -
- tT a w_xT!
0 b - H M so & - H M
-2 -3
. . T . . T €2.30>
1o ¥ -y M 10 XX - M
40 &4 16" o4

Those expressions come from te well known equations

of classical t.he.-rmodynamics‘s’:

aT
q = X 3x + o (Vxﬁ)i {2.31ad

1

aT

Q = - ¢ (Vxﬁ)‘,. * (2.31b>

¢

1

In these eguations ¥y and f are the heat conduction coefficient

»

and the =similar associated to the flux Qt’ respectively; pus

,uﬂ are coefficients linked to the cross effects between both
phenomena. The relaxation times ;‘ and ;6 are linked to the
cross effects too. Finally, we have a relation that has to be

cheyad by the coefficient=s a , a_ , a and a

10 o0 [T ey

a _ a Z%(a +a ) . €2.32>

3 - SOME APPLICATIONS OF THE NEW PHENOMENOLOGICAL EQUATIONS

The first relation between the phenomenological

coefficients is deduced when we take the reciprocal Onszager’s

relations™. In our particular case we have two phenomena of
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same tensorial character, so we write:

=g ®=a., (3.1

Consequently the relaxation times ;1 and ;c linked to the cross

effects between both phenomena are the same:
T =T _wmT . 3.2>

Let’s consider a situation where dissipation is due
to a and Q only, and temperature T and fleld of spin velocity,
ﬁ.? are made constants. In this way, the thermodynamical forces
vanish and consequently the system tends to a state of
thermodynamical equilibrium characterized by g = § = 0,

Taking in mind the system of equations (225> and the

theory of autonomous dynamical syst.emstﬂ

in this situation, we
can conclude some informations about the new phenomenological

coefficlients. So, making V9T = o5 w 0 in (225>, we have:

AL
o

- M ¢ 3.3

.o.
L

In order to simplify the analysis, Jet’s consider that all
phenomenological coefficients are approximately constants. It's
easy to realize that the =system (33> has one critical point
dn sense of dynamical system theoryd caracterized by
a = 6 = 0. Such point. must be stable, in sense that all curves

ofplane phase goes to this point dig. 1), Two conditions must
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be =matisfied for such behaviour:

T (a_ a -~-a_ a)
det M = €0 10 & ¥ 50, ¢3.4>
a a = a o
1 (-3 i -]
and
- {r -l-'r)amam (a‘:; -l-az;)
tr M = < = < B . rXo (3.5>
T (“;“5_"1“6)

where det M and tr (M are, respectively, the determinant and
trace of matrix M. In this way, the following relations can be

easily deducted:

T T > =2 4 €3.6>
1 -1 -1 -1
40 oD
2
T o+ > 22T 3.7>
i o £ F- 1
10 oSO
$Q

- q

Figure 1 ‘



CBPF-NF-013/90
PF / - 44 -

It’s clear from these equations the compromise
between the relaxation times. A new situation can be considered
where the thermodynamical forces are making time independent
and keeping again the constancy of the phenomenological
coefficients. As consequence f (eq. 227> is time independent
also. On these conditions the system of equations (2.25) has a
critical point characterized by E;’ - ?[o and 6 - ao, where ao and
éo are determined doing G=0 and @ = 0 in <225 The
behaviour of the curves on phase plane will be the same that in
the previously analysed case. Po {fig. 2> will specify a
non~-equilibrium stationary thermodynamic state, where all
physical terms are time independent. In this way we conclude

that the non-equilibrium stationary state is stable.

§G;

— Q;

Figure 2 : -
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- Fluctuations of dissipative fluxes near the non-

equilibrium stationary state -

The second moments of the fluctuations of the
dissipative fluxes 3 and 6 near the stationary state Po can be
calculated following the well known Einstein approximation

X3

modified to apply to non-eguilibrium fluctuation . The

probability of a fluctuation is:

' &'s
P ~ exp [ i ] ’ (3.8>

r

where k is the Boltzmann constant and &’s is the second
differential of specific entropy, starting from the
non—equilibrium state Po. Next. we have to expand the entropy
arcund its value at the state of reference. Since for the state
Po the entropy has a maximum value and neglecting higher-order

a3 .
terms , we obtain:

2 d - -
s = - 2a T 6369 - 2T 2 5380 - 2ta 53560 . €3.9>

Substituting (3.9 in (3.8), leads to:

{3.10)

Thiz expression leads for the second momentum of the

fluctuations of the dissipative fluxes to the formula:

L €3.11>
T i)
10 1

< 6qi(;,t.) 6qj<§~’,t,> > = -
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€ SQELd Q> >m K 5 €9.425
L J T i)
o0 o
-» -» k
< sq > Q> > m X5 . €2.13>

Ax we can see directly the second moments of the fluctuations
determine the phenomencological coefficients. Such point of view
has been exploited in the Green-Kubo relations for the
dissipative coeff icients .

We specialize here to consider the time dependence of
the correlation functions of the fluctuations of the
dissipative fluxes q and Qt' Ve assume that the time decay of
ST and SCADD are much longer than the characteristic time of
decay of random independent fluctuations éin:]t and 6Q,:m. So,

the term evolution of the fluctuation are obtained from the

system of equations (2.25) and write as:

8q. éq.
o - M ' 314>
&Q. &Q

i i
As a consegquence of these equations, the time
correlation of the fluctuations of the dissipative fluxes in a

stationary state is given by:

kt? klt’
" " bacz et - bzc‘ e k 6i.j
< 6qt(r,t) éqj(r,t.ﬂ’) > = F e =T o -
21 0 4
kzt' k‘t’
bzbn e - e k &
+ =, €3.15)

bc -bc a T
O 2 1
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kL k‘t’
- - bc,e - bec e k 6i_.i
< &Q (r,bt) SQAT,t+t’) D = — +
i ] b c bzc‘ aaoTa
_ k‘t’ kzt’
cc ) - & k&
+ b ¢ -bc — €3.18>
i 2 2 1
k k t*
- - cacz € - e k 6""
»
< 6qL<r,t.> 6Qj(r,t.+t >V = R -
1 =2 2 4 40 4
xt? k t’
b‘c e - bzc e k &
+ R — 347>
i 2 2 4

bc -bec a_ T
21 o0 S
kll.’ kzt’
b‘c e - b:c‘ () k 6”
* bc -bc aTt '’ 3.18>
s 2 2 4
.where bl, <, and bz’ c, are. respectively, the components of

the eigenvectors of matrix M associated to the eigenvalues k‘
and kz. It can be shown that k‘ and kz are negatives, smo the
fluctuations go to zero as t’ goes to infinity.

4 ~ CONCLUSIONS

In the classical theory, Q, Qi and éi.j are not
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considered as independent wvariables, but they are given in
terms of equilibrium wvariables by means of constitutive
equations. Here they are considered as independent dynamic
variables and their respective fluctuations are described by
the non~equilibrium entropy <(2.11> via Einstein relation (38).
The dissipative flux Qi_ has the same tensorial character of the
heat. flux q,, then cross-effects terms appear in the
respectives phenomenclogical equations. New phenomenological
coefficients have been introduced and it was possible to obtain
some restrictions to these coefficients.

In the case where the dissipation is due to q and Qi.
only, we computed the fluctuations of theses fluxes near to a
non-equilibrium stationary state. As usual, the fluctuations
are expressed in terms of phenomenological coefficients
associated to q‘ and Qi,' At last, the time correlation of the
fluctuations of the dissipative fluxes q‘,' and Qi in this

stationary system were obtained.
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