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Abstract

It is shown that the Hartree solution of a relativistic
hamiltonian of the type considered by Walecka and collaborators
is unstable with respect to particle-hole excitations responsible
for fluctuations of the /nucleon effective mass, unless the
negative energy states (Dirac sea) are taken into account and the
corresponding renormalization counter terms are properly treated.

It is also shown that static properties as well as low
frequency dynamical properties are not too much affected by
vacuum polarization effects.

However, renormalization is crucial for a correct description
of high energy processes associated with the creation of scalar
mesons or of particle-antiparticle pairs, even if the momentum
transfer is small. Polarization effects lead to a reduction of

the effective mass of the scalar meson in the medium.

Key-words: Relativistic manybody theory; Dirac sea; Stability.
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A most successful model of the nucleus regarded as a
collection of relativistic nucleons interacting through the
exchange of ¥ and & mesons has been developed by Walecka and
collaborators {1]). In this simple model, the nucleon effective
mass has been determined by the mean-field value of .the ¢ field, -
neglecting the contribution of the negative energy nucleon
‘states, although the replacement of the free nucleon mass M by
the nucleon effective mass M* implies an actual involvement of
the negative energy states in the underlying mechanism.

It seems very natural to postulate that the ground state of
a physical system should have the fundamental property of being
stable. By stabili/ty we mean that no slight disturbance will
decrease the energy of the eguilibrium state and the time
evolution of the perturbed state only involves real frequencies.
We will show in this paper that it is necessary not to disregard
the role of the negative energy states in: order to guarantee
the stability of the system.

Since the @ field dQoes not play a relevant role in the
following discussion, it is not explicitly taken into account in
the presentation, for simplicity. |

The hamiltonian of a system of nucleons interacting with a

scalar meson field may be written as

H= [ [V @5 +pMIP -~ g4 ppd+ LM vpwd entd?)). (1)

No counter terms are needed for renormalizing the nucleon and the
meson mass, provided the configuration space is spanned by
zero momentum mesons and positive energy nucleon states only, so
that transitions into negative energy states are artificially
forbidden.
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Let l M7, >= | spu’)>® | Q) denote the product
of a Slater determinant |SD(M‘’)> of positive energy plane wave
nucleon states of mass M‘and momentum less than p, multiplied by
a ccherent state|q>> of zero momentum mesons.Note that the mass
parameter M‘is different from the mass M appearing in the

hamiltonian, (eg.{1)). The energy of this nuclear state is

E(M, @)= <M, Pl HIM @>

(2)

where V is the normalization volume. It is clear that the Hartree
Fock equations for this system are satisfied at a stationarity

point W with respect to variations of M’and @ ; i.e.,
R

=4(M-9 ¢ - M') 2. L = 0, (3)
. p<p. (7% Wiy

2E _ ‘3M'_ 2 -
.5.;_._42 + mtpV =0 . (4)

The energy surface E(M’,4) is represented in fig. 1 which
shows that the stationarity point W does not provide a minimum of

the energy. The fact that, at the stationarity point, the

determinant
A= |22E 2%E
o M* oM o
>°E *E (5)
oMo® o9q*
-_4 2 P 2 z p* )
<P (pPe M2 P2 (mV+ 43 Pt (P2 Mty
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is negative, proves that this point is a saddle point. This
instability is obviously due to keeping the negative energy
states empty in the trial Slater determinant |M7,¥>. This means
that the negative energy states should be filled up, so, the
remedy to the instability probl‘em lies in the replacement of the
trial Slater determinant previously considered, by a new Slater
-determinant of positive energy plane wave states with momentum
less than pp and negative energy plane wave states-with momentum
.less than some cut-off value A , which, eventually, will be
allowed to increase indefinitely. For simplicity, we use the
same symbolIM’,Cr > for the new state. However, the presence of
sinéle particle negative energy states requires the
renormalization of the hamiltonian thrdugh appropriate counter
terms, which depend on the value of A , so that, following Chin

[2), we write

~o 2 3
H=H4 Jdax(QA +}‘:bl\¢> +§‘.!.CA¢ *"%dﬁ¢4+-;zh/\“2 ) ‘

(6)
On the other hand, the configuration space should be defined as
the space of single particle states of momentum less than A ,

either with positive or negative energy. The coefficients a "bA ‘

A
C d  and 1/\ are well defined functions of the cut-off momentum

AT A

A vwhich are determined so as to insure that the physical values
of the free nucleon and meson masses, respectively M and m, are
reproduced by the model. The energy of the state |H’,CP > becomes

E(M, )= <M, ¢l B 1M,
43 P+ M (M-gq) m

_ 2
P.W —+V.(-—2!_-m<?d\-cf
2
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where the dash on the summation sign reminds us that

Z' - z -.2__ (.8)

)

The stationarity condition is now written as

2E _ 4 (M-a9- M')Z e =0 (9
oM K P (p2am2)™>? )

oFE _ _ ‘\Z' %M' +V(m2- b N 2 4 3)

= = Parr 0P x2-C Q47 Q]

=0. | (10)
We require that,at the stationarity point, for the vacuum (pF =0)
the nucleon mass M‘has the free nucleon value M and the field cp

is zero. This requirement yields

@, = -4 2 M.
< 2 2z
| P<ANp?im (11)
In order that the derivative OF / BCP remains a well defined

function of C? , when the replacement M’= M - g<f is made in
eq.(10) and /\ is allowed to increase indefinitely, we also

require
4o © 5 M
oM p<A \,m_z. (12)
V¢ = - ?i.. Z M
neo 4T 24 r<A v -
Vd, = 4922 5 M (14)
r= 45w EM"‘ p<A JpTen®
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From eq.(9),the effective mass of the nucleon in nuclear matter

is given by

M* = M ~ cho (15)

- where Cf is such that

4T (M-3R

PP (M- cg,cm |
_‘._% CACPO""é"iqu," ) =0. (16)

When A approaches +oo, this equation becomes

29 (% (M-g %) p2 By M-9%
* S" Vp*+ (M-9)> { S A
+ ML%CPO—-E My Py + A %3‘?:.3}-1-1113‘?,'-‘-0. (17)

At the stationarity point the determinant
r A Z

A= |oE ?TE

oM* oM OP

+V('m Pt O, +. B'cP +

- ™% E ¥*
OMIP B¢ (M5 %)
=-4 Z‘ P 4 P
P (PP M* )3/::,[ '} F (por ¥ )3

X V(i byse,q, *g dyho ) ] (18
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is positive, since both factors in the right hand side are
positive. Indeed, as A approaches +00 , the quantity .

A:___e. p 2 i/_‘Q_-»r'nrf"ar b+ CA‘-?,,+;‘£61A°P°2
Ve (pta ™)
(19)
remains well defined and is positive, and
: ¢ .
s a2 ¢ F 4
S = Bim SA_ 49 j P de
A—)m 2,‘7-2' O\/Pz'-t(M %ceo)"
3 (M-, Y g M-3F +3m1=?.,
(ZTL) { %
~3g2 >0 .
2 ¥ j}.-1- 11\' (20)

In fig. 2, the nuclear energy E(M’,?)—E(M,‘f=0,p'==0) is plotted

as a function of the variables MZand

A(M-Mig ). (21)

Expressed in terms of these variables, the energy surface is
independent of A, provided A is large enough. The stationarity
peint is now a minimum, as is clearly shown in fig. 2.

At this point we would like to briefly remark that the
renormalization considered by Chin is the minimal renormalization
scheme insuring that the physical consequences of the theory are
independent of the cutoff A . However, other renormalization

schemes are equally possible. It is clear, for instance, that the
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same effect is accomplished if in eq. (7) the counter terms cxﬁcp-r
{ 3 ¢ 4 are replaced by the term
$htr g w5 da

4N %A Jeta(M-g<p)®

which completely cancels the vcontribution of negative energy

states. Actually, this prescription has the nice feature bf
providing.a. justification for Walecka’s initial procedure, as far
as equiribrium properties are concerned, angd, woreover, of
stabilizing the Hartree-Fock. solution. |

In table 1 {(columns I and II) we study the influence on
several physical quantities of the renormalization procedure
accounted for by eq.(7). The values of gv and g;’ are fixed by
the density and binding energy of nuclear matter. We observe that
the effective mass M* and the incompressibility K are slightly
improved by the renormalization procedure, since M*=522 MeV is
usually considered too low an effective mass and K=546 MeV is
also considered to be a too high an’ incompressibility.
This improvement is not sufficient, but the poséibility remains
of adding extra terms to the hamiltonian. In columns III and IV
we study the effect of adding a term of the form A jd.sz ¢>4
to the hamiltonian [(3]). We consider it an intéresting result
that the static properties (binding energy,density, nucleon
effective mass, incompressibility, etc.) remain the same when this
term is added, whether the negative energy states and
corresponding counter terms are omitted or not. This result
provides a justification for the original Walecka prescription of
taking only into account positive energy states. We observe that
the values of the effective mass M* and incompressibility K
obtained when the term A Sd}l ¢4 with 2.=80, is added to the
hamiltonian are very reasonable. We recall that the inclusion of

the Dirac sea insures the stability of the system.
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We return now to the previous hamiltonian (eq.(6)), i. e., we
omit the term A !d"':(’)“ We wish now to investigate, in
the Random Phase Approximation the dynamics o©of scalar
excitations with 2zero momentum of our system. To this end ﬁe
consider. the Jollowing canonical transformation of the gero

nmomentum component of the meson field

?dP: “Fo'l'.d?‘ , (22)
M = ﬁ . (23)

so that
-1

[-n @]: «V . (24

+ i .
We denote by CP the creation operator for a particle in a state

with momentum p (creation operator for a positive energy state)
t . . . .

and by b,, the creation operator for an antiparticle with

momentum p (destruction operator for a negative energy state).

Zero momentum excitations may then be described by the

hamiltonian

el
H=E(M*, o) + Hppy 1

(25)
and

=2 E (e bib)-g Z ('q_c*b"

P< 'P,_.<?<A

an, b e )+..vl;(n rmd )y a1l e

= (-b + ‘5\cfo ‘“ ;{C? ) (¢> ]
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Here .
=Vp +M (27)
-5
¥ (28)
We regard the operators ¢t ! and b T as quasi boson

P -¥ - F
pperators, so that the RPA hamiltonian As diagonalized by the

canonical transformation
. ) - v _—~

- <t 1 . .
e_%(r b 'i""j? Pcp)ﬁbxﬂ*\(d?- (29)

We have, therefore
+ +
(H '] = w 6, (30)

provided € is such that
2

w 16 3° Z

—
— T Sm——p———

t+ A vV r (m -4 %)

-rm-rb +c.(P° 2_ A‘?o- (31)

The renormalization constant AA is fixed by the requirement that,

RPA?

for the vacuum (pF =0) the energy of the lowest (collective) RPA
state is given by the physical meson mass,®=m. We obtain,
therefore, the condition

2

1 — ‘H— z L (32)
1+2, V  op<a 83(m 48)
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where Eerpz-i-M?'. Moreover, when the Fermi momentum does not

vanish, we have the dispersion relation for the eigenfrequencies

> "_—FA (-(.07') (33)
‘'with y 3
Fla)= - if_?’: 2 sl .
P< € €, (0*-4E7%)
496 3 v e

=3 z Nz_)
V<A N g3(m*-4e7) B (W4l

4 9% 2 1 2 z
TV Pz<j/\ Té_ by * A Rr F AR T ™

(34)

The function FA (&fi is
represented in fig.3. We observe that gh(0)= 5, >0, (see eq.(20)).
The stability condition SA >0 insures, therefore,that the
solutions of the equation (o?'=Fh(m") are positive ( @)is real).
The collective energy for the mesonic state remains real when
#0 and the coupling with nucleons yields 50 MeV mass defect
for the meson in nuclear matter.
We remark that the Walecka model, without explicit treatment
of the negative energy states, also admits a zero momentum RPA
mode. Since in his model there can be no particle-hole excitation

with zero momentum, such an RPA mode 1is strictly related to

mean field fluctuations, which induce fluctuations of the scalar

density through the relation M '=M-g ¢ and give rise to an RPA

frequency corresponding to

2 2 4322 e* n?

V<o &
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‘_'I'his RPA frequency increases with pF while the solution €Wouf the
corresponding dispersion relation in.our approach {eq.(33)) shows
the opposite behaviocur which =seems to be =required by
experipent. Note that £he fluctuations in the Walecka model are
constrained on the straight line M =M-g{ in-fig. I:

Y

The non collective solutions should not be ignored, since
they may play a role in the high frequency properties of the-
system.Indeed, given some transition operator D, the RPA provides
well defined prescriptions for computing the transition amplitude

from the RPA vacuum [O) to the RPA excited state 'P)

CIdI0) = <M ([0, DIIM, D>  G5)

from which the transition strength 66?\ ( p\ | 0) l z is

obtained. The sum rule

?%(opl(vlb lo)lzz-._;._.wfcp,\[D,LH,D]J | M¥ P, >

(36)
determines how much strength is distributed over non collective
states.

The wmain conclusion of fhe present work ds that the
stability of the Hartree solution of a relativistic hamiltonian
of the type cbnsidered by Walecka and collaborators requires the
appropriate treatment of negative energy states (Dirac sea) and
the corresponding renormalization counter terms. It is natural to
adjust the counter terms so as to insure that in the vacuum the
mean field (P is zero, so that the nucleon effective mass .
coincides with the mass M. One then finds that the static
properties of . nuclear matter (binding energy, density,

incompressibility, etc.) are not drastically affected by



CBPF-NF-012/89

renormalization and in some circumstances may even be quite
insensitive to renormalization. This fact @provides a
justification for the initial Walecka prescription of
disregarding renormalization altogether.It seems that Walecka's
prescription is also appropriate to describe low frequency
dynamical processes, connected with low energy particle-hole
excitations close to the fermi surface (giant resonances).
However,renormalization is crucial for a correct description of
high energy processes associated with the creation of scalar
mesons or of particle-antiparticle pairs (RPA correlations),even
if the momentum transfer is small. Processes of this type are
responsible for the reduction of the value of the effective mass

of the meson in the medium.
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Figqure captjons

Figure 1

Energy surface E(M’,Cp )Jof & trial mean field muclear state

composed of positive energy single particle states (Permi sea},

in +the presence of the (dfield, as a function of the nucleon
effective mass M’ and of the scalar field €]’ The coupling constants

gcand qm are f.:i;xed so0 as to reproduce the properties of nuclear

matter [1]. The two solid lines crossing at the stationarity

point W represent the Hartree egs.(3) and (4), i.e., M’=M-g9 and
4%, > W

'l'l'l.zv P<r: IP..‘" Mlz'

P =

Figure 2

Energy surface E(M’,Cf) - E(M,(f=0. ﬁ-‘-‘O) of a trial mean
field nuclear state composed of positive and negative energy
single particle states (Fermi sea plus Dirac sea), in the
presence of the Wfield, as a function of the nucleon effective
mass M’/ and of the parameter z. The coupling constants g‘ and Y%

are fixed so as to reproduce the properties of nuclear matter

[23}.
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Figure 3

Graphical determination of the collective excitation energy
corresponding to the ecalar meson mass in the medjium, in .the
-presence pf the Dirac sea.The ordinate .?.tﬁ)'.ﬂs’ of the interserction
of the function F(zsz'jwith the y axis, is positive as reguoired
by the stability of the Hartree state composed of positive -and
negative single particle states. The chosen parameters for

- this figure are ge =7-21, 1 =280MeV, so0 that m=500 MeV.

The solution is 6)=450 MeV, corresponding to a 50 MeV mass

defficiency.

Table caption

Table 1 - The coupling constants Ie and g, fixed so as to
reproduce the binding energy and the density of nuclear matter,
the nucleon effective'_ mass M#*, the incompressibility K and the
stabillity of relativistic Hartree states are displayed for
several models described in the text. The first two 1lines
summarize the definition of the models considered. We use the

masses in Mev, 940 for nucleon, 500 for Send780 for &3,



CBPF-NF-012/89

=15-

(APIN) . N
0001 009

00Z

|

-

-
o, .

-

=,

—— - - -

-

-

=

-

e

iy

”Inl'll’ltl-'""lll-"
-

.u.. - .ao_*@aa
-

i i L=+_1L —

00 ¢

_lel.r,.lf“m|u.--—-\\-,.

Y L i []

...h._..._..__.h..r._wpa._am_

L oot



CBPF-NF-012/89

*10°

-16—~

LI ] J ] UL ‘ll ll"ll-_I_l I

! U RSN YRR S T S S A I OV S T O O

1400

600 1000

M* (MeV)

R
200

1.0

1 S

"'0.5

2
7



CBPF-NF-012/89

“l7-

¥

- oy G B S ek Sk e ey

-——.--—-unn-_-b

@ © o

- 1
(zASNH0T) (zm)d

40 50

30

20
w2 (104MeV?2)

10

Fig. 3



CBPF-NF-012/89

-18-
Table 1
r 1 t o -~
¥ & Ik 1 ILIY 3 v
; 1
At 2 0 80 80
Model -
Dirac
sea excluded included excluded included
. 8.73 7.21 5.79 5.78
L+ l11.66 B8.90 4.95 4.93
M* (MeV) 522 675 818 818
K (MeV) 546 468 ' 224 224
Stability ' No Yes | No Yes |
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