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ABSTRACT

We present some algorithms to £ind the explicit form of

Lanczos potential in an arbitrary geometry.
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1 INTRODUCTION
(1]

In the early sixties Cornelius Lanczos made the remark
that in any Riemannian geometry the Weyl conformal tensor, WaBuv
[that is the traceless part of the curvature tensor RaBuv} can be
written as first derivatives of a third order potent%al LaBu' all
tentatives to generalize this result to the curvature tensor
failed. Although research on the Weyl tensor became very important
in gravitational theory, the same did not occur with Lanczos poten-
tial. There are two main reasons for this. The first one, of more
general character, was just due to the suspicion [linked to the
particular demonstration used by Lanczos] of the non-existence of

L in every Riemannian geometry. Lanczos used a variational

By
principle to obtain Bianchi's identities and in this way, the
potential LOLBU appeared as Lagrange multipliers. There remained
some doubts on the generality of this procedure. Twenty years

after the first Lanczos paper on this subject, Bampi and Caviglia[zl
gave a completely new proof. However, both demonstrations were not
able to provide an algorithm which could be used to obtain the
form of L g, in a given geometry. This indeed is the second main
reason which made Lanczos tensor be so seldom .employed until
nowadays. The purpose of the present paper is precisely to remedy

this situation searching for general methods to obtain Lanczos

potential for an arbitrary Riemannian geometry.
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2 'NOTATION AND SOME USEFUL FORMULAS

We denote by the symbol; the covariant derivative in
the four-dimensional riemannian space time (ST).

i tri ion: A -4
Antisymmetrization A[uv] v

uv M

Symmetrization : A(uv) = Auv + Avp

Weyl conformal tensor (WaBuv)' the curvature tensor (RaBuv) and

the. contracted tensor (Ruv) are related by the formula:

|-

=R (2.1)

WoBuv afuv Miguv * 8 R 948uv

in which

aguv © Yausv = JavIsu

1- _
MuSuv =2 IRaung + Rnguu - Ravgﬁu - RBngav]
The dual operators, represented by an asterisk * is de-
fined by
_1 . o
Auv T2 nuv Apa

for any anti-symmetric tensor. is the Levi-Civita .comple-

nUVpc
tely antisymmetric object.

We have

*
guBuv = ggﬁuv = gaﬁﬁ%'z naBﬁv

*

naBuv'= -9

GBUY
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The symbol gasuv is a sort of metric for bi-vectors, in the sense
that, for any bi-vector Auv = _Avu we have

af _
ghvaB A = ZAuv -

The electric (Euv) and the magnetic (Huv) parts: of the Weyl tensor

are defined for an arbitrary time-like vector by

= - OysB
Euv = WuuvB vV (2.2a)

= W {(2.2b)
HvY pavpg

Due to the fact that the Weyl tensor is trace-less we ‘can-show that

*

WGBuv = W W

&Buv - aBud

The ten degrees of freedom of WaBuv are equally distributed among

its electric and magnetic parts. Indeed, (2.2) implies that

Euv = ¥
E v¥ =0
uv
EY =0
u
Hyy = Hyy {2.3)
u
Hqu 0
g¥ =0
"
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which projects any tensor in the 3-dimensional rest-space of the

observer V", with_the properties

h "h = h
W TAv Hv
by = hy,
MV _
huvg = 3

The covariant derivative of V! is separated in its irreducible

parts by the expression

V=9, *tsh +u_+aV (2.4)
u

in which the symmetric shear v is given by

1 a B 1
= - 1 2.
“uv 2 h(u hv) Vu,B 3 8 huv (2.5a)
the antisymmetric vorticity w,, bys
21 @, B8 {2.5b
R RS Y (2.50)
the expansion ©:
HT|
and the acceleration au :
- d
a =V V)k (2.5d)
u WA

with the properties:
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5o
a vl = 0

pv

‘ H

w VvV =0

”“u (2.6)
auV = 0

uv

.. g =0

pv

From W)y we can define the corresponding vector mu

T _ 1 _aBecx (2.7a)
w' =g PPN
or, inversely,
. THRY 12.7b)
s = naBuvm v

In any riemannian ST these quantities obeys three constraints and

three evolution equations:

Equations of Constraint:

g B o Ca g a, _ oo
3 e,uh'l - {0 8 + W B):B h y — @ (GAd +mlu) = Ruav h N
(2.8a)
o O -
By + 2 a, = 0 {2.8b)
1hE B, 0 B (0 4o ) ' (2.8¢)
27 (o7 o) e v Was* e’ iy T 2% = “Hyo :

B + = #0° = ° - = My V
3 - W a y Rqu v {2.9a)
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B
M Voo 1 1.2 _1 Uy ¥
ha hB cuv+ 3 haB[2 wo - 0" + a ;A] +aag 5 ha hB a(u;v)
{2.9b)
2 : H . _ €.,V 1 U,V
+ 3 & GuB + auu B~ wde Raesvv v - 3 Ruvv v haB
h Yn, Y, -1 h'h."V a + 2 0w + 0w, —c w =0
a "B Yuv ~ 2 Ta B [u;v] 3 aB ap B Bu o
(2.9c)
in which o2 = ¢ o"¥ and w0 = w w*® o 2w .
uv aB W
A dot means derivative projected in the V”-direction, that is,
§ =8 V.
A
Einstein's Egquations:
R -41Rg =-kT -Ag
uv 2 TRV TRV uwv (2.10)
We use in this paper k = 1.
The right hand side will be represented by a perfect fluid:
Tuv = DV'].-IV\‘ - P hl.l\) (2411)

Theé generalization of the subseqﬁent results for more genefal

kind of fluids is straightforward, although rather tediously l9pgr
Two important consequences of thig hypothesis in the

above equations. Using (2.10), (2.11) and (2.9a) this later egquation

takes the form

R L I % (p+3p) + A (2.94)"
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and for the evolution of the shear:

By Vo -1 1 2 2 A .
hu hB- _qu + 3 haB [- 5 w” - ¢ + a ‘W‘] + (2'91_3)'
B _ 1y ¥V , 2 . o Po = -E
+ aaa > ha hB a(u;v) + 3 8 UuB+-°u'°uB_ WaWg = --EGB
and for (2.8a):
2 H o B a C _
3 a,uh e (o g+ B),u h , - @ (Ulu+“ha) =0 . (2.8a)’
3 LANCZ0S POTENTIAL
Definition:
A tensor Luvp which has the symmetries
LuBu + LBGU =0 (3.1a)
LuBu + Lsua + LHGB =0 (3.1.b)

and from which Weyl conformal tensor -Wabuv-can be obtained by

the formula

Waguv = Lagruzvl ¥ Liviase) ¥ (3.2)
] {L(av)gﬁu * Ligy) Jav T Plan)Tpv L(Bv)guu} *
2 _agl
+§L o3 guBuv !

is called a Lanczos potential. In this expression
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L 2 L - L . (3.3)

Remark that although the Weyl tensor has only 10 degrees of freedom,
a tensor Lasp which obeys relations (3.1) has 20 independent

components. This means that there are 10 degrees of freedom. Lanczos
choose to fix this arbitrariness by imposing extra conditions, e.g.,

B
LaB = 0 and LGBu = 0,_which gives precisely 10 more equations

1
to eliminate the freedam. The trace-free condition comes from

the invariance of Was under the: map

v

N .
Logu ~ Lagy = Tapgy + Ma9py ~ Mgy (3.4)

for an arbitrary vector M . The second (divergence-free) condition
comes Erom the observation that in expression (3.2) this divergence
is completely absent. It is clear however, that there is no sound
argument to impose such gauge, and it remains as arbitrary as any
other.

From (3.2) it follows that there is no local relationship
between LgBu and the metric v (although such - relation can be

exhibited in the quasdi-Minkowskian ST in the approximation

- . 2
guv = nuv + Ewuv for € << e, In this case it was shown that
L -1 [y - + 1 Yy oon -1 ¥ ,n..1) and this seems to
aBu 4 oy, B Bu,o 6 ",0 uB 6 ",B ua

[3114]

turn the role of LaBu somehow mysterious This situation can
be overcome by exhibiting LOHJB for any geometry. We will
investigate this approach and prove some useful lemmas. Let us
remind the reader that all along this paper we call space time

(ST) any four-dimensional Riemannian geometry which satisfies

Einstein's equations with a perfect fluid as its source.



° CBPF-NF-012/87

Lemma 1. If in a given ST there is a field of observers v+
which is shear free and irrotational, then the magnetic
part of Weyl tensor vanishes for the observers
(Huv = 0)

Proof Trivial (use eq. (2.8c)).

Lemma 2. If in a given ST there is a field of observers v¥ which
is shear-free and irrotational, then the Lanczos poten-

tial is given by

aBu B a u

up to a gauge.

Proof A direct manipulation of the above kinematical equations

will be used. Suppose formula (3.5) applies.Then we have

- 8 9 -
LaBu;v = aa:vVBVu + aa(3 hBV+anV’vu + aaVB(3 huv+auvv)

{3.6)
0 8
aBVa (g hw+auv\)) - aB (5 ha\)+a0‘.V\J)v].l

Contracting with VBVv

Bv-- T -2
VvV = aavu + aaau + a Vavu

LuBu:v

Then, in an analogous way

By¥ = L} v azv \'
LGBVEUV vV = aa:u + 3 au o + avy
L o vhvW -av +aa + alviv:
uvazp TR noa ua
L V' =a +8av +atvy
1 uia_. 3 o a W
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Then,
B,V _
(Faslu:v] Luv[a;B]) M
8
-=a, V
3 T(n a)
The contracted tensor is
-1 ) -1 g
o a4 U0 o gru

In this case, from (3.5)

then

Then, we have

L (an) 9’ ¥

n|—=

' B
L(Bv)guuv-v

(ST

g
3 Liav)Tpu’

1 8.,V

7 Ligu) Javy ¥

V.

AV

vV =

wla

wlm

"'10-

v y 2a -

Bau) T 2" (azn)
- aE VvV - a

" ;e o M o u
v Vv

i ¢ M
vV

H

(3.7
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1 ; _ B,V
2 {L(av)i-gs-u * DiguyTav T PamTey L(“Bv).guu} Vv =
(3.8)
__ 1 1 i ! 1
=-3 a(avu) + g 8 a(avu) aaau + a ;Ahau + 3 a(u;u)
And,
2 . 0X By _ _ 2 A
3 L GrA gaBuvv'V - 3 2 P A hau {3.9)

Then, collecting all terms (3.7}, (3.8) and (3.9) we obtain

1 » 1 1 : 1 €
w =3280V Y/ T 2% TS b aVey *3? :ehuv

- E
Comparing this expression with (2.9b) we see that formula (3.5) yields

the correct electric part of. the Weyl tensor. It remains to show {(by

Lemma 1) that (3.5) takes to the vanishing of the magnetic part.We

have
v _cgraB 2 clia
[LaB[uvv]+LHv [a;B]]VxE n =-30aV,n
and
1 : _ _ gV okae= g gla
5E’(vu)gﬁu+1'(Bu)guv'-l"(au)'gsv- L‘(ﬁv)gaulvkv " 303y
and

gE v_ghaf _
L c;eguBuvvlv n 0

- Adding those terms, we obtain Huv'? 0, which ends the proof.

Example. Lanczos potential for Schwarzschild geometry.

Consider the metric
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2 2

: 2 _
as? = (1 - i_ﬂ)dtz - —4r_ _ 2 (ge%+sin?eds?) © (3.10)
Let us choose a frame defined by the . observer. VW which, in

the system (t,r,6,¢), has components

=1/2 _ g g o 2My-1/2 (43:11)

¥o_ oM - -
Ve o= 875 (940! =387 T

This observer is shear free and irrotational and has a non-vanishing

acceleration given by

Z =M (3.12)
all = (0, - 2 IM. ! 0, 0)
r7 {1 -=)
r
A direct application of lemma 2 implies that the  Lanczos potential

has the form mel = a[aVB]Vp, which yields for the only non-vanishing

term:

L .M
010 ~ r2 y (3.13)

If we want to exhibit.La in Lanczos gauge we have just to

Bu
subtract the trace, or to set

n, " 1 _._
I = (aVV —aV V) -3 (a,90,=25% ) (3.14)

aBu

Remark that in this form we have incidently both Lanczos conditions

satisfied



-l3~ CBPF~-NF-012/87

In this gauge

y .2
010 - 3 2
r
__1_ M
ﬁ122"31_2_14
r
T . _ 1M sinze
133 ~ 3‘1' M
- T

Lemma 3. If in a given ST there is a field of free observers
(geodetic) V¥ which is irrotational and such that either

H # 0 and
uv :

€ 1 2 1. _
(i) Uu o,y = 3° huv -3 ] cuv_ 0 (3.15)
or Huv = 0 and
(1i) qu + 8 qu =0 {(3.16)

then the Lanczos potential is given respectively by

LaBu = cuavB - UuBVa in case (i) ,and by (3.17)
_a . -
LaBp =3 (ouuvﬁ-cﬁuvu) in case {(ii), up to a gauge.
(3.18)
Proof. The procedure is the same as in the precedent Lemma.
Suppose
Lygy = “ua¥s ~ “ug'as 7
then

Aap

. - Aap v = -
E'GB[u;v-'] - I‘uv[asﬁl]'"c ViV =0y a8
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all the others terms vanish identically when symmetrized in o,u.
Then we obtain
1 Biv

How =72 "o mygzavv *

which is the value of the magnetic part of the Weyl tensor in
the case of absence of vorticity (cf. eq. (2.8¢)).

From (3.17) we obtain the electric part as given by

which will be compatible with expression (2.9b)' of the evolution
of shear only if condition (3.15) applies. This ends the proof.
In a similar way we show that in the case of vanishing Huv the

form of Lanczos tensor is given by (3.18) under condition (3.16).

Example 1+ In order to exhibit more directly the interdependence

of Lanczos-potential and an observer let us analyze an example to
ilustrate the present case in the same geometry as above
(Schwarzschild) as viewed by a distinct observer. We choose here

the path of an observer to be geodetic and irrotational. For instance,

take

v = (1, —rm , 0, o] (3.19)

The shear is given by (the system of coordinates is the same as

in (3.10))
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-15=-
o o1 w32
00 - r\r )
. - 2M
o1~ T 2 2M
r (1 - T
_ (2M\1/2 1
931 = - ) PP (3.20)
r
_ G Mr,1/2
%22 = GF)
. Mr.1/2 2
Oqy = (2) sin”9

and, consequently, applylng our Lemma 3 the non-null components of

Lanczos potential are

Loy = =
‘010 = 3 7
_lo2m/2 1
Lo1n =3 F) oM
r{1 - —)
r
- 1 1/2 _
Loyy = — g (2Mr) (2.21)
o 1/2 2
L033 =" % (2Mr) sin™ 9
1 M
M22 T T3 2N,
r
S D R
Lizz =~ 3 7M. Sin 8
1 -2

Compare this expression of Lanczos potential with the one obtained
in (3.13) by choosing an accelerated observer (without shear and
vorticity). As the geometry is the same and the system of

coordinates is also the same, the components of Weyl tensor must
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be the same. What is then the difference between the very simple
expression (3.13)} and the rather long one (3.21) for Lanczos
potential ? The answer is simple: it is due to the different

gauge choices made in these cases.

Example 2: Kasner geometry. A rather simple case is Kasner geo-

metry, where a geodetic irrotational observer is well-known:

vt = a“o . (3.22)

We write the metric in the standard gaussian system of coordinates
2p 2p 2p o
ds =dt2-t1dx2—t-2dy2_t 3d22 (3.23)

with

Pi*Potpy = 1 and  (p) 3 (p) 2 (p? = 1

The non-vanishing components of the shear for (3.22) are

1—3pl 2p1-1

911773t
. S 1—3p2 t2p2—1
022 3 (3.24)
1-3p 2pa.-1
5 _ 3 g 3
33 3

In this case, a direct calculation shows that

(3.25a)
Huv [V] = O

and

qu + ec].!\-‘= o . . (.,3.25‘:1))
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We can then apply Lemma 3 for this observer to obtain

2p1—1

|
N
Lo —
)
—h

|
W=
a4

c11

L =

022 (3.26)

W=
—
o)

8]

|

W=
b
o

Ly33 =

w|=
—
o]
L
1
wl|=
g
cr

Incidently, in this case we can easily see that .this form is in

woo_ U -
Lanczos gauge (La y = 0 and LaB su = 0).

Lemma 4. If in a given ST there is a field of free
observers (geodetic) v¥  which is non-expanding and shear free.

then the magnetic part of Weyl tensor vanishes for this observer

(Huv = Q).
Proof. Using (2.8c¢) and the hypothesis that
Vu:v = muv {(3.27)
we have
a=n BYV = 2vY 3.28
Hoo =M " Vilgpsy = 2V uge¥y ¢ )

But



CBPF-NF-012/87
]_ =]18e

geaf pi
Vv = .
DG:Bn € (nua mpvk)«sn

r

cgeap v
E

_ GEUR ; P
= nuapxn (N v ):ng

- 6creB

P
UpA ™V );B v

£

(6°8°
u.p

B ,O0.E.B 0,€.8B 0.€ . B 0.c.B
§, - 5.6 8" =83 4 6§ 6787 -
A Guaxﬁpf Xep p u51+ AT

g.e.B Pephy.
8,8 8 ) w7V A

g [, e.B B..& 8.0
5u tfw v )=BVE - (w'V )SBvé] + (0 V ):3 Vu -

OB (o S €..0 ]
- (6 V );BVu + (o V );uvs - (w'V );u VE

Using equation (2.8b) which implies that m"_u=0 and the identity

¥
maum“ = 0 we arrive at

wuu:BnceaBVs =0 (3.29)

or, equivalently

uv

which .ends the proof.

Lemma 5. If in a given ST there is a field of free observers (geo

detic} v¥ which is shear-free and non-expanding and such that

w =0 (3.30)
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then the Lanczos potential is given by

vl
=1

- B _ 1
= £ = = 3.31
Lygu YapVu * 2 YV T 2 mBuv;I ¢ ‘

Proof. Let us evaluate the electric part (Euv) from (3.31). We

have

LdBquva“ = % by, = O
which vanishes by {2.9c)
L vhyY = 1, B
aBvyu 3 Taf ¥
I.L-l-\mBv.r'ﬁv‘J - %'&uu =0
LuVB:u-va -7 % mquBu
Then
(Lo usv) * Luv[asﬁl)Vvi = % wak“lu
From (3.31)
L(ap) = % w(uc;cvu) - % muqmoa.= - % muamaa

o
since from (2.8b), w_ ., = 0,
K

Then
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Byv _ 2 €
Byv _ _ 2
Ligv)a V'V = -3 09,
B..v 1 o] 1 2 _ 1 2
Byv _ 1 2
The trace LGBB't 0, then we cobtain from Lanczos formula of WUBHV:
_ > 1 2
FELa7= Y Wy Y30 R,
But from the definition (2.7)
w Ew = - 1 w2h - W
a £M 2 ap a
Thus we can write
_ = 1,2 (3.32)
(3.32) Eua =5 hau + wamu

which' is precisely the expression for the electric part of the-Weyl
tensor as given by (2.9b)' in the present case.

It remains to show (by the previous Lemma 4) that

Huv =0

From (3.31} we have

vV AaB _
LuBuzvvlv Mg =0
v uyY. A8 _ 4 Y
Luﬁvzuvlv Mg -3 “JK:UV
| v V. AeB _ 2 Ao
Liva; VAV N, =3 OV = 0 (use (3.29)) .
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Thus

(LaB[u:vJ +:Luv[u381] Viv g -9 mcx;uv
The trace ]:,w"l = 0, and thus

2 €

Lan) =~ 3 “a “en
Then, putting all terms together:

1 ' 3 v_ AaB _

Zf{L(av)?ﬁu * L(Bu)sﬁv L (au) v Llﬁv)guw}vlv "o =0

Finally the magnetic part of Weyl tensor constructed via the Lanczos

potential yields

%* A :
NI 13.33)

]

i

|
Wl

which vanishes by hypothesis (3.30). Indeed, we have

A1 aB 1 aB ot
* - . = - =
Y =2 Moa “apsuva = 2 Mon Yap) ;¥
_ l aB €_.T X
-2 (nck nuBETm v ,:uv
= (6% L 8% WV v
T € £ T U
A A
= = wo;p - wkuv + mk;uVOV
= ==
Uiu

This ends the proof of Lemma 5.
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Example: G8del geometry

Let us consider GWdel's metricin the system of coordina-

es (t,X,Y,Z)S

2

ds = dtz

- ax® + 2¢¥ae dy + 3 3 ay? - az?  (3.39)
Choose the observers VF® co-moving with the matter which is the

responsible for the curvature ¢f the ST:

{3.35)
Hoo_ M
Vi =38 0
The only no-vanishing component of the vorticity ©y is
= - = - & [axX (3.36)
W2 T U4 2 © |
and then-.
w" = (0,0, 0, /7 a) . (3.37)"

We see that for this vector Ly = 0 which is the condition (3.30).

r

Thus, we can obtain Lanczos potential, using Lemma 5, by the formula

- 1 1 .
Lagu =9 [éasvu *2 9, T2 mBuva:] (3.38)
which gives for the non-null components
a _ax
Lo12 =18 ©
Lo21 = = Loq2 (3.39)
Lizo = =2 Ipq

Lygz = =3 Lyqy
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Incidently, we can see that (3.35) gives Luﬂu in

' B _ H =
Lanczos' gauge (LuB = 0 and LuB " 0).
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