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ABSTRACT

We consider the square-lattice spin 1/2 anisotropic
Heisenberg ferromagnet with interactions whose symmetry can inde-
pendently (quenghed model) and randomly be of two competing types,
namely the isotropic Heisenberg type and the Ising one. Within a
real space renormalization group ¥ramework, we perform & guite
precise numerical calculation of the critical frontier, and esta-
blish its main asymptotic behaviors. We also characterize the
relevant universality classes, through the analysis of the correla-

tion 1length critical exponent.

Key-words: Heisenberg ferromagnet; magnetic anisotropy; phase dia

gram; universality classes.



CBPF-NF-012/85

'In recent years, several attempts have been made to
study critical properties of magnetic systems characterized by in-
teractions belonging to competing symmetries (detailed theoretical
and experimental information can be respectively found in  Refs.
[1, 2] and [3] and references therein). A particularly interesting
case is that where spins on a regular lattice might be coupled
through uniaxial, planar or spherical interactions, whose respecti
ve prototypes are the Ising, isotropic XY and isotropic Heisenberg
models. Such situations have already been experimentally encounte

[4]

red in antiferromagnetic systems like Fe)_xCoyxBr) (Ising - XY

(5, 6] (Ising-Heisenberg competition).

competition) and RbyCoxMn]-x
From the theoretical standpoint, Ising-Heisenberg mixtures have
been studied, for quenched random site systems, within éffective

field frameworks[T], and, for D=2 quenched random bond systems,
with high-temperature series techniques[z’ 81. For this second ca

ge, a continuous variation of the susceptibility critical exponent

y with concentration was obtained. As pointed out by Pekalski

himself[z’ 8]

, this result is clearly unsatisfactory; ‘indeed, symme
try arguments strongly suggest that the universality class corres-
ponding to the system under analysis should be, almost everywhere
in the critical frontief, that of the Ising model.

In the present paper we study the phase diagranm and
universality classes of the quenched bond-random spin 1/2 anisotro
pic Heisenberg ferromagnet in square lattice, each bond of which
being either an isotropic Heisenberg interaction or an Ising-like
one. The formalism we use is a real space renormalization group
(RG) one, which. has recently been developed[g‘ 10] for guantum
spin systems, and whose performance has proved to be guite relia-

ble (both gualitatively and quantitatively for square lattice}.

We consider the following dimensionless Hamiltonian:
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z Z X X y ¥ _
M = I Kij[oiaj + (1 - aij) (oi Uj + oy oj)] (1)

<i, 3>

where <i,j> denotes first neighbors on a square lattice, the o¢'s
are the Pauli operators, Kjj = Jij/kgT > 0 (Jj45 is the coupling
constant) is the same for all bonds, and 435 €I0,1]1 is the random
anisotropy parameter. For the li;iting value 'ﬁij =1 (ﬂij = 0)we
recover the Ising (isotropic Heisenberg) model. The randomness

of the problem is described by the following probability law:

1}

P(Rij., 833) = [P§ (835-4) + (1 - p) 8(8;54)] 8{Kjj -~ K) (2)

with 0 s p£1 0 =351 and K = J/kB? > 0. The particular
case & = 1 corresponds to the Ising-Heisenberg mixture analyzed
in Refs. [2] and [8].

To construct the RG we follow along the lines of
Refs. [9] and [10], renormalizing the cluster of Fig. 1l(a) i into
that of Fig. 1(b} (the linear scale factor being consequently b=2);
both clusters are self-dual, therefore particularly performant for
the square lattice.

We associate the binary distribution (2) with each one
of the 5 bonds of cluster 1{a). Consequently 2° different configu

rations are possible (some of them being topologically equivalent).

Each configuration is characterized by the set ({K{?’}, '{aii)})

with ¢ =1, 2, ..., 5. With each configuration we associate
(2) (2) (L) (2) . [9,10]

KH({Kij 1, {Aij }) and AH({Kij 1), {nij 1} by imposing

JU2 - o 1234 (3)

3,4

Where 2,3, and #j; are the Hamiltonians correspondig to the

clusters of Figs. l(a) and 1l(b)} respectively. These two Hamilto-
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nians are precisely of the same type indicated in Eq. (1) (i.e., the

present RG denerates no new types of terms). Although imposiﬁion

(3) is a very natural one, its operational implementation- is rather
complex as it involves the computational treatment of a 16 X 16 ma
trix (associated with Jij534); practical details on the procedure
can be found in Refs.[9,10].

The renormalized parameters Kjj and 835 are now
associated with a distribution law Py which is no more binary.

It has in fact 14 different §'s, and is given by

5
B Kigo byg) = | T a{Pan{d pxi®, a8 sy - ®) sgy - ) (@)

Under successive renormalizations the distribution law becomes mo-
re and more complex. It is in principle possible to keep track
of its evolution up to an eventual stabilization, but, following

along the lines of previous similar theories (e.g., Ref.[1l1l]), we

shall instead approximate it by the following binary one:
P'(Kiy,8i5) = [p'6 (Bi5 - A')+(1-p")8(a35)] 8(Rj5 - K') (5)

where p', K' and A' have to be found as functions of p, K and
A. To do this we impose that the main momenta are preserved through

renormalization. More specifically we demand

< K;Lj >pr = < Kij >PH = gl {p, K, A} (6)
< Bjq >p' = < ﬂij >py = 93 (p, K, 4) (7)
< bij >p = < f}.ij >pg ° g3(p, K, A) (8)
where <....> denotes the standard mean values. While Egs. (6)
and (7) are guite natural choices, Eg. (8) has been adopted in

order to decouple o and A. The set of Eqs. (6)~(8) immediately
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-4 =
yvield
K' = g, (9)
P' = 92/3' (11)

which constitute the RG recursive relations which‘close the for
malism. Iteration (in the (P, 1/K, 4} space, for instance) pro-
vides the para-ferromagnetic criticai surface (see Figs. 2(a) and
2(b) for selected cuts of this surface) as well as the set of
universality classes. For p=l we recover the results obtained
in Ref.[9]. When p and/or A increaée, the lower symmetry
(Ising) becomes dominant, consequently the critical temperature is
expected to increase, as exibited in Fig.2. 1In the neighborhood

of p=4 =1, we obtain the following asymptotic behaviors:

Tﬁ(p:ﬂ-;ﬁ) - T, (p A}

~ A(A) (1-p) (1) (12)
Tolp=1, &)

and

T (p, 8=1) - T lps &)

n~ B{p) (1-8) + C(p) (1-8)* (a+1) (13)
Tc(pr A = 1)
where A{A), B(pP) and C(p) are shown in Figs. 3 and 4. Numeri
cal difficulties prevented us from a reliable description of the
T+ 0 asymptotic behaviors.
Two non trivial fixed points belong to the critical

surface, namely the isotropic Heisenperg one (at (p, kgT/J. A)

= (1, 0, 0)), and the Ising one (at {p, xBT/J, 8) = (1, 2.269..,1)

both are located at the exact values {12,13], rThese points charac-
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terize the unique two universality classes of this problem; indeed
the RG flow shows that the universality class is that of the
Ising (isotropic Heisenberg) model for all points of the critical
surface at finite (vanishing) temperature. These results disagree

with those obtained (for the antiferromagnetic system) by high<tem

perature series 2/ 8],'and confirm the- symmetry-based intuitive ex
pectation.
The correlation length critical exponents are given by
v, = 1ln b/ln Ay (i =T, A) (14)

i

where 1; is the relevant eigenvalue ‘31 z I) of the Jaccobian ma
trix a3l{p', K', A')/3(p, K, 8) calculated at the corresponding fi-
xed point. We obtain vp = 1.15 (the exact value equals'iil41)far
the Ising fixed point, and vq = o (which reproduces the exact va-
lue[lsl) and v, = 1.22 (we found no other value in the literature
for comparison) for the isotropic Heisenberg fixed point.

To conclude let us say that we believe that the present
approximation of the critical surface should be a numerically quite
reliable one.

We acknowledge fruitful discussions with A.0. Caridg
one of us (A.M.M.) also acknowledges useful remarks from C.A.P.Gal

vao.



CBPF-NF-012/85

10.
11.
12,
13.
14,
15.

REFERENCES

. A. Aharony, J. Magn. Magn. Mater. 31-34, 1432 (1983).

A. Pekalski, in "Static Critical Phenomena in Inhomogeneous SYyS
tems", Lectures Notes in Physics 206, pp. 158, Springer-Verlag,
(1984} .

K. Katsumata, J. Magn. Magn. Mater. 31-34, 1435 (1983).

K. Katsumata, J. Tuchendler and S. Legrand, Solid State Comm.
49, 1, 83 (1984).

H. Ikeda, T. Riste-and G. Shirane, J. of Phys. Soc. of Japan,
49, 2, 504 (1981).

Y. Ajiro, K. Adachi and M. Maketa, Solid State Comm. 37, 2.

449 (1981).

A. Komoda and A. Pekalski, J. Phys. C. 14, L1067 (1981).

A. Pekalski, J. Phys. C. 10, 4785 (1977).

. A.0. Caride, C. Tsallis and S.I. Zanette, Phys. Rev. Lett 31,

145 (1983); 51, 616 (1983}).

A.M. Mariz, C. Tsallis and A.0. Caride (Submitted to J. Phys. G )
R.B. Stinchcombe and B.P. Watson, J. Phys. C. 3, 322% (1976).
N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

L. Onsager, Phys. Rev. 65, 117 (1944).

T.T. Wu, Phys. Rev. 149, 380 (1966).

A.M. Polyakov, Phys. Lett. 598, 79 (1975).



FI1G.

FIG.

FIG.

FIG.

CBPF-NF-012/85

FIGURE CAPTIONS

Self-dual two-terminal clusters. The terminal and in-

ternal nodes are respectively denoted by O and .

(a) Cuts of the critical frontier for selected values of
A; (b) Cuts of the critical frontier for selected values
of p. P and F are respectively the paramagnetic and ferro

magnetic phases.

s-dependence of the asymptotic coefficient A(A} given

by Eq.(12); [A{l) = 0.32 and a(0) = 0.18].

p-dependence of the coefficients B(p) and Cl(p) given
by Eq. (13); [B(1) = 0, C{1) = 0.29 and B(0}) = 0.17,

C(0) = 0.05].
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