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Introduction

Throughout this paper the letters E and F represent locally convex spaces,
always assumed complex and Hausdorff, and the letter U represents a nonvoid
open subset of E. L(E;F) denotes the vector space of all continuous linear
mappings from E into F, whereas H(U; F) denotes the vector space of all holo-
morphic mappings from U into F.

Mazet [16] proved the existence of a complete locally convex space G(U) and
a mapping §y € H(U;G(U)) with the following universal property: For each
complete locally convex space F and each mapping f € H(U; F), there is a
unique mapping Ty € L(G(U); F) such that Ty o éy = f. To prove this result
Mazet introduced the notion of cotopological space and exploited the duality be-
tween cotopological spaces and locally convex spaces.

In this paper we present a different proof of the Mazet linearization theorem,
based on a result on inductive limits of Banach spaces. The rest of the paper is
devoted to the study of some aspects of the interplay between the spaces H(U; F)
and L(G(U); F), with applications to the study of holomorphically barrelled do-
mains, holomorphically Mackey domains, holomorphic continuation, analytic sets
and holomorphic convexity.

This paper is organized as follows. In Section 1 we give a sufficient condi-
tion for an inductive limit of Banach spaces to admit a representation as a dual
space, thus extending a result obtained by Mujica [17]. In Section 2 we use that
result to prove the Mazet linearization theorem. In addition our proof shows that
the correspondence f — Ty is a topological isomorphism between H(U; F) and
L(G(U); F), when the former space is equipped with the topology 75 introduced

independently by Coeuré [6] and Nachbin [19], and the latter space is equipped
with the limit topology 7, introduced by Nachbin [21].

In Section 3 we show the existence of a dense subspace Go(U ) of G(U) such
that éy € M(U;Go(U)), and which has the following universal property: For
each complete locally convex space F and each Gateaux holomorphic mapping
J + U — F, there is a unique linear mapping T} : Go(U) — F such that
Ty 0 by = f. Moreover, Ty is continuous if and only if f is continuous.

In Section 4, following the terminology of Barroso et al. [1], we study holo-
morphically barrelled domains, holomorphically Mackey domains, etc. We show
that an open set U is holomorphically barrelled (resp. holomorphically Mackey)
if and only if the corresponding space Gg(U) is barrelled (resp. Mackey). We do
not know whether similar results hold for holomorphically bornological or holo-
morphically infrabarrelled domains.

In Section 5 we give a result on vector-valued holomorphic continuation.
We show that when V' is an open subset of E including U, then the follow-
ing conditions are equivalent: (a) the restriction mapping H(V; F) = H(U; F)
is a bijection for every complete locally convex space F; (b) the spaces G(U)
and G(V) are canonically topologically isomorphic; (c) the restriction mapping
(H(V; F), 15) = (H(U; F),75) is a topological isomorphism for every complete
locally convex space F. This extends results of Coeuré [6], Hirschowitz [11] and
Schottenloher [26] [27].
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Finally, in Section 6 we study when the image of the mapping éy is an an-
alytic set. We show that if U is an open subset of a complete locally convex
space E, then 6y(U) is an analytic subset of a suitable open set V ¢ G(U). We
also show that if U is an open subset of a (DFM)-space E, then &y(U) is an
analytic subset of G(U) if and only if U is holomorphically convex. This last
result was obtained by Mazet [15] when E is finite dimensional.

We remark that for the sake of simplicity we have stated our results for open
subsets of locally convex spaces, but the results remain true for Riemann domains
over locally convex spaces.

The first author would like to thank Mario C. Matos for several helpful con-
versations while this paper was being prepared.

1. Inductive Limits of Banach Spaces

We follow the standard terminology from the theory of topological vector
spaces, as found for instance in the books of Horvath [12] or Schaefer [25].
We systematically use the following notation, introduced by Grothendieck

[10]. If A is a convex balanced, bounded subset of a locally convex space E,
then E, denotes the vector subspace of E generated by A, and normed by the
Minkowski functional p4 of A. If V is a convex, balanced 0-neighborhood in E,
then py is aseminormin E, and Ey denotes the normed space (E, pv) / p5* (0).

We denote by E] the strong dual of E, and by E! the inductive dual of
E, that is, the dual E’ of E, endowed with the locally convex inductive limit
topology defined by

E! = indv Ey.e = indy(Ev);,

where V' varies among the convex, balanced (-neighborhoods in E, and V°
denotes the polar of V' in E’. The inductive dual of a locally convex space has
been studied by Berezanskii (2], Bierstedt [3] and Floret [9].
We denote by 7, the limit topology on L{E; F'), introduced by Nachbin [21],
and defined by
(L(E; F), 7¢) = projyw indv L(Ev; Fw),

where V and W vary among the convex, balanced O~neighborhoods in E and
F, respectively. Observe that when F =@ then (E’, 7¢) coincides with E!.

A key tool in this paper is the following result, which was established by Mu-
jica in [17] for countable inductive limits, but the proof given there works equally
well in the general case.

1.1. Theorem. Let E = ind E, be the locally convez inductive limit of &
family of Banach spaces, directed under inclusion.

(a) Assume there exists a (Hausdorff) locally convez topology v on E such
that the closed unit ball B, of each E, is T-compact. Let F be the complete
locally convex space of all linear forms on E whose restrictions to each B, are
T~continuous, equipped with the topology of uniform convergence on all the sets
B,. Then the evaluation mapping J : E — F! is a topological isomorphism.
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(b) If, in addition, E has a basis of T-closed, convezr, balanced 0-
neighborhoods, then F] = F| and E is topologically isomorphic to the strong
dual of F,

2. Linearization of Holomorphic Mappings

We follow the standard terminology from complex analysis in locally convex
spaces, as found for instance in the books of Dineen {8} or Pérez Carreras and
Bonet [23].

Let U be an open subset of a locally convex space E. If F is a Banach

space and U = (U;) is a countable open cover of U, then H>(U; F) denotes the
Fréchet space

H®(U; F)={f € H(U; F) :ggllf(w)ll < oo for every j},

equipped with the topology of uniform convergence on all the sets U;. The
topology 75 on H(U; F), introduced independently by Coeuré [6] and Nachbin
[19], is the locally convex inductive limit topology defined by

(H(U; F), 75) = indy H=(U; F).

If F is a complete locally convex space, then the topology 7 on H(U; F) is
defined by

(H(U! F)? TS) = pmJW(H(Ua _F'W)s 7'6)1

where W varies among the convex, balanced 0-peighborhoods in F. When
F =@ we write H(U) instead of H(U; @) and H*(U) instead of H*(U; T).
By using a theorem of Ng [22], which characterizes dual Banach spaces, Mu-
jica [18] obtained a linearization theorem for bounded holomorphic mappings.
We now use Theorem 1.1, which may be regarded as a generalization of the Ng
theorem, to prove the linearization theorem of Mazet stated in the introduction.

2.1. Mazet Linearization Theorem [16]. Let U be an open subset of a lo-
cally convex space F. Then there are a complete locally convez space G(U) and a
mapping by € H(U; G(U)) with the following universal property: For each com-
plete locally convez space F and each mapping f € H(U; F), there is a unique
mapping Ty € L(G(U); F) such that T; o by = f. This property characterizes
G(U) uniquely up to a topological isomorphism.

Proof. If & = (U;) is a countable open cover of U, and a = (a;) is a sequence
of strictly positive numbers, then we set

Bi={fer>U): sug |f(z)] € a; for every j}.
| 2€U;

Then, with Grothendieck’s notation, we have that
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H®U) = indy H*(U) 52

and therefore

(H(U)a 75) = indu,a H(U)Bﬂ

Furthermore, it follows from the Ascoli theorem that each Bj} is a compact subset
of (M(U), 7.), where 7, denotes the compact-open topology. Let G(U) denote
the complete locally convex space of all linear forms on H(U') whose restrictions
to each Bj; are 7.—continuous, endowed with the topology of uniform convergence
on all the sets Bfj. Then it follows from Theorem 1.1 that the evaluation mapping

J : (R(U), 75) = G(U);
is a topological isomorphism. Observe that
(H(U), 7o) € G(U) C (H(U), 75)".

Let 6y : 2 € U — §; € G(U) denote the evaluation mapping, that is,
6:(f) = f(z) for all z € U and f € H(U). Since

(2.1) Jf o by(z) = 8:(f) = f(=)

for all z € U and f € H(U), and since J : H(U) — G(U) is surjective, we
see that the mapping §y : U — G(U) is weakly holomorphic, and in particular
Gateaux holomorphic. To show that éy is continuous, we begin by observing
that the topology of G{U) is generated by the seminorms

pu(u) = sup{|u(f)| : f € Bg}.

Since pfi(6:) < a; for every z € U; and every j, we conclude that 8y is amply
bounded, and therefore continuous. Thus &y € H(U; G(U)).

We next claim that the evaluations §,, with z € U, generate a dense vector
subspace of G(U). For otherwise, by the Hahn-Banach theorem, we could find
a nonzero T € G(U)' such that T(é;) = 0 for every = € U. But since J :
H(U) = G(UY is surjective, we would have that T = Jf for some f € H(U).
But then we would have that

f(2)=8f)=T(6;) =0

for every z € U, and hence T = 0, a contradiction.

We finally show that the pair (G{U), éi) has the required universal property.
We distinguish three cases. _

(a) If f € H(U), then we define Ty = J£. It follows from (2.1) that Tyoéy =
f, and the uniqueness of T follows from the fact that the evaluations &, generate
a dense subspace of G(U).

(b) If f € H(U; F), where F is a Banach space, then we define Ty : G(U) —
F" by
(2.2) (Tru)(¥) = Tos(u) = u(po f)



CBPF-NE-011/90

for all ¥ € G(U) and v € F'. Clearly Ty is linear. To show that T is
continuous, observe that the set

B={ypof:9peF, [¢¥||<1}

is locally bounded, and is therefore included in B§ for suitable &/ and a.
Thus |{Tyu|| < 1 for every u in the polar (Bg)° of Bg in G(U). Thus
Ty € L(G(U); F"). On the other hand

(Tybs)(¥) = 6=(p o f) = o f(2)

for all x € U and ¢ € F'. Hence T46, = f(z) € F for every z € U. Since
the evaluations &8, generate a dense subspace of G(U), it follows that Tyu € F
for every u € G(U). Thus Ty € L(G(U); F) and Ty o éy = f, as asserted. The
uniqueness of Ty follows as in (a).

(c) Finally let f € H(U; F), where F is a complete locally convex space.
Then F can be represented as a projective limit of Banach spaces, namely
F = proj Fiy, where W _varies among the convex, balanced 0-neighborhoods
in F. Let #nw : F —» Fy and Twwr : Fwr — Fw denote the canonical
mappings, when W’ C W. Since 7w o f € H(U; Fw), (b) yields a unique
Tw € L(G(U); Fw) such that Ty o 6y = 7w o f. One can readily see that
*ww: ¢ Ty = Ty whenever W’ C W. Hence there exists T € L{G(U); F) such
that mw oT = Ty for every W, and it follows that T o8y = f, as asserted. The
uniqueness of T follows again as in (a} or (b).

Since the uniqueness of G(U'), up to a topological isomorphism, is a direct
consequence of the universal property, the proof of the theorem is complete.

2.2. Remark. In the proof of Theorem 2.1 we saw that the evaluations
6z, with = € U, generate a dense subspace of G(U). The same proof shows the
following:
(a) If D is a dense subset of U, then the evaluations ., with z € D, gener-
ate a dense subspace of G(U). In particular, G(U) is separable if E is separable.
(b) If V is an open subset of U which meets each connected component of
U, then the evaluations 8., with = € V, generate a dense subspace of G(U).

In the proof of Theorem 2.1 we saw that the mapping
f € (H(U), 7s) — Ty € GU);

is a topological isomorphism. More generally, we have the following result.
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2.3. Proposition. Let E and F be locally convez spaces, with F complete,
and let U be an open subset of E. Then the mapping

F€(H(U; F), 75) = Ty € (L(G(U); F), )

i8 a topological isomorphism.
To prove this proposition we need the following lemma.

2.4. Lemma. Let U be an open subset of a locally convez space E, and let
F' be a Banach space. Let U = (U;) be a countable open cover of U, let a = (a;)
be a sequence of strictly positive numbers, and let

Bi(F) = {f € HU; F): sup If@)l| S oy for every j).

Then for a mapping f € H(U; F) the following conditions are equivalent:
(a) f € By(F).
(b)Y o f € Bf; for every ¥ € F' with ||¥]] < L.
() ITAll <1 for every u € (BE)°.

Proof. To begin with observe that the set BZ is convex, balanced
and 7-~closed. Hence B is o(H(U), (H(U), 7.)")~closed, and therefore
o(H(U), G(U))-closed, since (H(U), =.)) C G(U). Thus (BZ)® = BE, by the
bipolar theorem.

The equivalence (a) < (b) is obvious. As we saw in the proof of Theorem 2.1,
the implication (b) = (c) follows from (2.2). And finally, if (c) holds, then it fol-
lows from (2.2) that o f € (Bf)™ = By for every ¢ € F’ with ||¢|| < 1. Thus
(¢} = (b) and the proof of the lemma is complete.

Proof of Proposition 2.3. We first assume that F is a Banach space.
Then, with Grothendieck’s notation, we have that

(H(Us F), '-"6) = indy . H(U; F)B;}(F)-

On the other hand, since the polars (Bg)® form a basis of convex, balanced 0-
neighborhoods in G(U), we have that

(L(GU); F), 1) = indy o L(G(U)pay; F).
Since, by Lemma 2.4, the correspondence

f € H(U; F)sgry — Ty € LG(U)sgye; F)
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is an isometry, the desired conclusion follows when F is a Banach space.

Finally, the case in which F' is a complete locally convex space can be easily
reduced to the preceding case by representing F as the projective limit of the
Banach spaces Fiy. The details are left to the reader.

The following result is also a direct consequence of Lemma 2.4.

2.5. Proposition. Let E and F be locally convex spaces, with F com-
plete, and let U be an open subset of E. Then a family {f;) C H(U; F) is amply
bounded if and only if the corresponding family (T},) C L(G(U); F) is equicon-
tinuous.

If E and F are locally convex spaces, and m € IV, then P(™E; F) denotes
the vector space of all continuous m-homogeneous polynomials from E into F. If
U is an open subset of E, f€ H(U; F) and a € U, then P™f(a) € P("E; F)

denotes the mth term in the Taylor series expansion of f at a.

2.6. Proposition. Let U be an open subset of a complete locally conver

space E. Then E is topologically isomorphic to a complemented subspace of
G(U).

Proof. By Theorem 2.1 there exists T € L(G(U); E) such that Tody(z) ==z
for every z € U. Fix a € U and let § = Ply(a) € L(E; G(U)). We claim
that T o §(t) = ¢ for every t € E. Indeed, given t € E choose r > 0 such that
a+(teU for every { €@ with |(| < r. By the Cauchy integral formnla

_ 1 u{a + (t)
S(t) - s '[k!=’ C2 dC!

and therefore

_L [ ekt
ToS(t)= 5= jmw - d=t,

as asserted.

3. Linearization of Gateaux Holomorphic Mappings

Let U be an open subset of a locally convex space E. By Theorem 2.1,
for each finite dimensional subspace M of E, there is a unique mapping wp €



CBPF-NF-011/90
-8

L(G(U N M); G(U)) such that the following diagram is commutative:

UnM > U
oM
(3.1) ' l Svnm l Sy
UNM) ——— G(U)
| ar

If M and N are finite dimensional subspaces of E, with M C N, then, again
by Theorem 2.1, there is a unique mapping 7xm € L(G(UNM); G(UNN)) such
that the following diagram is commutative:

UnM y» UNN
ONM

l Sunm l Sunn

GUNM) ——— GUNN)
TINM

Whence it follows that 7y o *yar = may whenever M C N. Let Go(U) denote
the subspace

Go(U) = 9 =u(G(U N M)),

where M varies over the finite dimensional subspaces of E, and equip Go(U)
with the topology induced by G(U).

3.1. Theorem. Let U be an open subset of a locally conver space E. Then:

(a) Go(U) is a dense subspace of G(U).

(b) bu € R(U; Go(U)).

(c) For each complete locally convez space F and each Gateauz holomorphic
mapping f : U — F, there is a unique linear mapping T : Go(U) — F such
that T; o 6y = f. Moreover, T; is continuous if and only if f is continuous.

Proof. (a) It follows from the commutativity of diagram (3.1) that 8, € Go(U)
for every = € U. Since the evaluations §,, with z € U, generate a dense subspace
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of G(U), we conclude that Go(U) is a dense subspace of G(U).

(b) We already know that &y € H(U; G(U)) and by(z) € Go(U) for every
z € U. To prove that 6y € H(U; Go(U)) it suffices to show that P™ éy(a) €
P(™E; Go(U)) forevery a€ U and me N. Fix me€ IN, a€ U and t € E.
Let r > 0 such that ¢+t € U for all { €& with |[{| < r, and let M be the
subspace of E generated by @ and t. Then it follows from the commutativity
of diagram (3.1) that

5
P™ by(a)(t) = o ! I=r%§f—) &

2xs

o}
- -2711;; jlct=r - 5(}(21(1“ + ) d¢ = mm(P™bynm(a)(t))
and therefore P™ éy(a)(t) € mp(G(U N M)) C Go(U).

(c) By Theorem 2.1, for each finite dimensional subspace M of E there is a
unique mapping Ty € L(G(U N M); F) such that Tas 0 by = foom. H M
and N are finite dimensional subspaces of E, with M C N, then the following
diagram is commutative:

vnd —— UNN — U

ONM oN
l Sunm l dunn l f

GUNM) ——— GUNN) ——— F
XNM Tn

Whence it follows that T o xya = Ths whenever M C N. Hence there is a
unique linear mapping T : Go(U) — F such that T o my = Ty for each finite
dimensional subspace M of E. Since Tpodyny = fooa for every M, it follows
that T'o 6y = f. If §: Go{U) — F is a linear mapping such that Soédy = f,
then it follows that S o wpy = Tay = T o wpp for every M, and therefore S =T.

Finally, if T is continuous, then f = T o 6y is certainly continuous. And
if f is continuous, then if follows from Theorem 2.1 that T is continuous. This
completes the proof.

The following result is then a direct consequence of Proposition 2.5.

3.2. Proposition. Let E, F be locally conver spaces, with F' complete, and
let U be an open subset of E. Then a family (f;) C H(U; F) is amply bounded
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if and only if the corresponding family (Ty,) C L(Go(U); F) is equicontinuous.

In the following result, which parallels Proposition 2.6, no completeness hy-
pothesis on F is necessary.

3.3. Proposition. Let U be an open subset of a locally convex space E.
Then E is topologically isomorphic to a complemented subspace of Go(U).

Proof. Fix a € U and let § = P éy(a) € L(E; Go(U)). If E is the completion
of E, then, by Theorem 2.1, there exists T' € L(G(U); E) such that Toy(z) = =
for every = € U. The proof of Proposition 2.6 shows that T o S(¢) =t for every
t € E. Thus to complete the proof it suffices to show that T(Go(U)) C E. Now,
again by Theorem 2.1, for each finite dimensional subspace M of E, thereis a
unique mapping Ty € L(G(U N M); M) such that Tas o Syna(z) = = for every
zr € UN M. Whence it follows that T o mps = Ty and therefore Tomp(u) € M
for every u € G(U N M) and every finite dimensional subspace M of E. Hence
Tu € E for every u € Gp(U), thus completing the proof.

3.4. Remark. By using e-products, Schottenloher [28] obtained linearization
theorems for Gateaux holomorphic mappings and for hypoholomorphic mappings.
Ryan [24] obtained similar results by using tensor products. We could also obtain
Schottenloler’s results with the help of Theorem 1.1, by introducing appropiate
substitutes for the topology 75 on the spaces of Gateaux holomorphic functions
or hypoholomorphic functions.

3.5. Remark. If Go(U) is equipped with the locally convex inductive limit
topology 7; defined by

(Go(U), T;) = mdM G(U N M),

where M varies over the finite dimensional subspaces of E, then one can read-
ily see that 6y : U — (Gg(U), 1) is Gateaux holomorphic, and the space of
Gateaux holomorphic mappings from U into F can be canonically identified
with L((Go(U), 7); F). This gives back one of the linearization theorems of
Schottenloher mentioned in the preceding remark. However, the results in Sec-

tion 4 will show that it is more useful to equip Go(U) with the topology induced
by G(U).
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4. Holomorphically Barrelled Domains

4.1. Proposition. Let U be an open subset of a locally convex space E.
Then, for each u € Go(U), there are a finite dimensional subspace M of E, a
compact set K CUN M, and a constant p > 0 such that u € pT'dy(K), where
TA denotes the closed, conver balanced hull of A.

This proposition follows at once from the following lemma.

4.2. Lemma. Let U be an open subset of a finite dimensional, locally conver
space E. Then, for each compact set L C G(U), there are a compact set K C U
and a constant p > 0 such that L C pI'éy(K).

Proof. Since E is finite dimensional, each bounded subset of (H{U), ,) is
locally bounded, 75 = 7. on H(U), and (H(U), ) is a Fréchet-Montel space. It
follows that G(U) = (H(U), 7.); and the evaluation mapping

J:(H(U), 7.) - GU),

is a topological isomorphism. Let L be a compact subset of G(U). Then the
polar LP is a O-neighborhood in G(U)}, and the set J~'(L°) is a 0-neighborhood
in (H(U), 7). Hence there are a compact set K C U and a constant r > 0 such
that

{f e H(U): sup |f(z)| < r} c {f e H(U): Ty € L°}.
After writting f = Ty 0 éy we see that r{6y(K))° C L° and therefore
1-—
LcI®c ;1‘-(6u(K))oo = ;:F(SU(K),
as asserted.

4.3. Proposition. Let E, F be locally convez spaces, with F complete,
and let U be an open subset of E. Then, for a family (f;) C H(U; F), the
Jollowing conditions are equivalent:

(a) (f:) is bounded on the finite dimensional compact subsets of U.

(b) (Ty,) is pointwise bounded in L(Go(U); F).

(c) (Ty,) is bounded on all the sets of the form wa(L), where M varies over
the finite dimensional subspaces of E, and L varies over the compact subsets of
G(U N M). '
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Proof. (a} => (b): This is a direct consequence of Proposition 4.1.

(b} = (c): Assume (T},) is pointwise bounded in L{Go(U); F), and let M
be a finite dimensional subspace of E. Then (T, 0 wp) is pointwise bounded in
L(G(UNM); F). Since G(UNM) is a (DF M)-space, and in particular barrelled,
(T, o mu) is equicontinuous, and therefore bounded on the compact subsets of
G(U N M). _

(c) = (a): This follows from the commutativity of diagram (3.1).

Let U be an open subset of a locally convex space E. We shall say that
U is holomorphically barrelled if for each locally convex space F (or equiva-
lently, for F =¢), a family (f;) C H(U; F) is amply bounded whenever (f;) is
bounded on the finite dimensional compact subsets of U. We shall say that U
is holomorphically infrabarrelled if the same condition holds, but replacing “fi-
nite dimensional compact subsets of I/ ” by “compact subsets of U ™. With the
terminology of Barroso et al. [1], a locally convex space E is holomorphically
barrelled (resp. holomorphically infrabarrelled) if and only if each open subset of
E is holomorphically barrelled (resp. holomorphically infrabarrelled). By com-
bining Propositions 3.2 and 4.3 we get at once the following result:

4.4. Theorem. Let U be an open subset of a locally conver space E. Then
U is holomorphically barrelled if and only if Go(U) is a barrelled space.

If U is holomorphically infrabarrelled, then it is easy to see that Go(U) is
infrabarrelled, but we do not know whether the converse is true.

We shall say that U is holomorphically bornological if for every locally convex
space F (or equivalently, for every Banach space F), a mapping f: U — F
belongs to H(U; F) whenever f is Gateaux holomorphic and f is bounded on
the compact subsets of I/. With the terminology of Barroso et al. (1], a locally
convex space E is holomorphically bornological if and only if each open subset
of E is holomorphically bornological. If U is holomorphically bornological, then
it is easy to see that Gy(U) is bornological, but we do not know whether the
converse is true.

Finally, we shall say that U is holomorphically Mackey if for every complete
locally convex space F (or equivalently, for every Banach space F), a mapping
f:U — F belongs to H(U; F) whenever o f € H(U) for every ¢ € F'. With
the terminology of Barroso et al. [1], a locally convex space E is holomorphically
Mackey it and only if each open subset of E is holomorphically Mackey.

4.5. Theorem. Let U be an open subset of a locally convex space E. Then
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U is holomorphically Mackey if and only if Go(U) is a Mackey space.

Proof. (=) Let F be a Banach space, and let T : Go(U) — F be a mapping
such that o T € Go(U) forevery y € F'. let f = Toéy : U — F. Then
Yo f = (YoT)oby € H(U) for every € F'. Since U is holomorphically Mackey,
J € H(U; F). By Theorem 3.1, T € £L(Go(U); F) and Go(U) is a Mackey space.

(¢=) Let F be a Banach space, and let f: U — F be a mapping such that
Yo f € H(U) for every 3 € F'. Then f is Gateaux holomorphic and by Theo-
rem 3.1 there is a unique linear mapping T : Go(U) — F such that T o 6y = f.
If Y € F' then (YoT)oéy = o f € H(U) and therefore o T € Go(UY,
again by Theorem 3.1. Since Go(U) is a Mackey space, T € L(Go(U); F). Hence
f € H(U; F) and U is holomorphically Mackey.

We next summarize the two problems posed in this section.

4.6. Problems. Let U be an open subset of a locally convex space E.
(a) If Go(U) is infrabarrelled, does it follow that U is holomorphically in-
frabarrelled?

(b) If Go(U) is bornological, does it follow that U/ is holomorphically
bornological?

For other results and open problems concerning these matters the reader is
referred to the book of Pérez Carreras and Bonet [23] and to the recent paper of
Bonet et al. [4].

5. Holomorphic Continuation

The following theorem complements results of Coeuré [6], Hirschowitz [11]
and Schottenloher [26] [27].

5.1. Theorem. Let U and V be open subset of a locally convez space E,
with U CV. Let §: GU) — G(V) be the unique continuous linear mapping

such that the following diagram is commutative:

v ——— Vv

J oL

GU) ——— G(V)
s
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Consider the following conditions:

(8) The restriction mapping H(V) — H(U) is a bijection.

(b) The restriction mapping H(V; F) — H(U; F) is a bijection for every
complete locally conver space F (or equivalently, for every Banach space F; or
equivalently, for every Banach space F of the form F = ¢=(I)).

(c) The mapping S : G(U) — G(V) is a topological isomorphism.

(d) The restriction mapping (H(V; F), 15) — (H(U; F), 75) is a topologi-
cal isomorphism for every complete locally convez space F (or equivalently, for
every Banach space F; or equivalently, for every Banach space F of the form
F ={>(I)).

Then conditions (), (c) and (d) are always equivalent, and each of then
implies condition (a). If V is holomorphically Mackey, then condition (a) is
equivalent to the other conditions.

Proof. To begin with we observe that since every complete locally convex space
F can be canonically represented as the projective limit of the Banach spaces
Fy, condition (b) for every complete locally convex space F is equivalent to
condition (b) for every Banach space F. And since every Banach space F' can
be identified with a closed subspace of £°(I), for a suitable set I, an application
of the identity principle shows that condition (b) for every Banach space F is
equivalent to condition (b) for every Banach space F of the form F = ¢°(I).
Similar remarks apply to condition (d). Thus to prove the theorem it is sufficient
to consider conditions (b) or (d) for every complete locally convex space F.

(b) = (c): By (b) there exists g € H(V; G(U)) such that goo = §y. By
Theorem 2.1 there exists T € L(G(V); G(U)) such that T o §y = g. To prove
(c) we shall show that

(5.1) ToSu)=u for every ue€G(U)
and
(5.2) SoT(v)=v for every ve€ G(V).

On one hand
ToSoby=Tobyoo=goo =6y,

and (5.1) follows, since the evaluations §., with z € U, generate a dense subspace
of G(U). On the other hand

SoTobyoo=8So0goog=8Soéy=éyoo,

and (5.2) follows, since, by Remark 2.2 (b) the evaluations §&,, with z € U,
generate a dense subspace of G(V).
(¢) = (d): By Proposition 2.3, each of the mappings

g € (H(V; F), 1) > T, € (L(G(V); F), m)

and
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f € (H(U; F), 15) = T; € (C(GU); F), )

is a topological isomorphism. On the other hand, since §: G(U) — G(V) is a
topological isomorphism, the mapping

T e (L(G(V); F), 1) = ToS € (L(G(U); F), 1)

is a topological isomorphism too. And since T,08 = T, for every g € H(V; F),
we conclude that the mapping

g€ (M(V; F), 75) 5 goo € (H(U; F), 1)

is a topological isomorphism, as we wanted.
It is obvious that (d) = (b) and (b) = (a). And finally, the 1mphcat10n (a)
= (b) when V is holomorphically Mackey, follows from a result of Nachbin [20].

To end this section we state some old problems that still remain open.

5.2. Problems. Let U and V be open subsets of a locally convex space
E, with U C V and V connected.

(a) If the restriction mapping R : H(V) — H(U) is surjective, does it follow
that R is a topological 1somorphlsm for the topology 757

(b} In Theorem 5.1, is condition (a) always equivalent to the other condi-
tions?

(c) Let F be a Banach space and let g : V — F be a weakly holomorphic
mapping whose restriction to I/ is holomorphic. Does it follow that g is holo-
morphic?

By the a,forementloned result of Nachbin [15], a positive solution to problem
5.2(c) would imply a positive solution to problem 5.2(b). And obviously a positive
solution to problem 5.2(b) would imply a positive solution to problem 5.2(a).

6. The Image of the Universal Mapping

Let U be an open subset of a locally convex space E. We recall that a set
X C U is said to be a holomorphic or analytic subset of U if for each z € U
there are an open neighborhood V of z in U, a locally convex space F, and a

mapping f € H{V; F) such that X NV = f~1(0).

6.1. Theorem. Let U be an open subset of a complete locally convex space
E. Then there are an open subset V of G(U) and e mapping f € H(V; G(U})
such that 8y(U) = f~Y0). In particular, by(U) is a holomorphic subset of V.

Proof. By Theorem 2.1 there exists T € L(G(U); £) such that Toéy(z) ==
for every z € U. If we define V = T-}(U), then it is clear that éy(U) C V.
I we define f € H(V; G(U)) by f(v) = v — 6y o T(v), then it is clear that
Su(U) = £71(0).



CBPF~-NF-011/90

6.2. Corollary. If E is a complete locally convez space, then there is a
mapping f € H(G(E); G(E)) such that ég(E} = f~1(0). In particular, §g(E)
is a holomorphic subset of G(E).

Let X and Y be Hausdorff topological spaces. According to Bourbaki [5],
a mapping f: X — Y is said to be proper if f is continuous and closed and if
F~YL) is a compact subset of X for each compact set L C Y. By [5, p. I. 72,
Proposition 2}, a continuous injective mapping f: X — Y is proper if and only
if f is a homeomorphism between X and a closed subset of Y.

6.3. Proposition. Let U be an open subset of a locally convez space E.
Then 6y is a homeomorphism between U and a linearly independent subset of

G(U).

Proof. We know that &y is continuous. If E denotes the completion of E,

then we know there exists T € L(G(U); E) such that T o éy(x) = z for every

x € U. Whence it follows that &y is injective and that &' : §y(U) — U is

continuous too. We finally show that éy(U) is a linearly independent subset of

G(U). Suppose there are distinct points zy,...,2, € U and ay,...,0, €&
L

such that Zakén = 0. By the Hahn-Banach theorem, for each pair of indices

k=1
4, k with j # k, we can find ¢;x € E' such that @;(@; — ) = 1. Then the
polynomials Pi,..., P, defined by

Pi(z) = [] ein(z - o)

h= l
i)

satisfy the conditions Pj(z;) = 1 and Pj{z¢) = 0 whenever k # j. By ap-

plying the functional Zakb}* = 0 to the polynomials P,,...,P,, we get that
k=1
oy =+ = a, = 0, as we wanted.

6.4. Corollary. Let U be an open subset of a complete locally convez space
E. Then the following conditions are equivalent:

(a) 6p(U) is a holomorphic subset of G(U).

(b) Sy(U) is a closed subset of G(U).

(c) by : U = G(U) is a proper mapping.

Proof. The equivalence (a) & (b) follows from Theorem 6.1, whereas the
equivalence (b) ¢ (c) follows from Proposition 6.3.

6.5. Proposition. Let U be an open subset of a (DFM)-space E. Then,
for each compact set L C G(U), there are a compact set K C U and a constant
p >0 such that L C pToy(K).



CBPF-NF-011/90.
-17- |

Proof. Dineen [7] proved that the bounded subsets of (H(U), 1) are locally
bounded, that 7; = 7. on H(U), and that (H(U), 7.) is a Fréchet-Montel space.
Hence G(U ) = (H(U), 7.); and the proof of Lemma 4.2 applies.

6.6. Theorem. Let U be an open subset of a (DFM)-space E. Then the
following conditions are equivalent:

(a) 8u(U) is a holomorphic subset of G(U).

(b) 8u(U) is a closed subset of G(U).

(¢) v : U — G(U) is a proper mapping.

(d) U is holomorphically conver.

Proof. By Corollary 6.4, conditions {a}, (b) and (c) are equivalent.
(c) = (d): If K is a compact subset of U, then one can readily see that

(6.1) 85 (T bu(K)) = Knay,

where

Knoy={y e U:|fy) < sup |f(z)| for every fe&H(U)}.

Hence EH(U) is compact if 8y : U — G(U) is a proper mapping.

(d) = (b): We first show that 63'(L) is a compact subset of U for each
compact set L C G(U). By Proposition 6.5 there are a compact set X C U/ and
a number p > 1 such that L C pT éy(K). Now, the proof of (6.1) shows also
that

5" (pTou(K))={y € U : |f(y)| < p sup|f(z)| for every fe€H(U)}

and, by applying the inequality |f(y)} < p supl f(z)| to the function f™, taking

mth root, and letting m tend to infinity, we see that
Bnoy={y €U :|fy)l S p sup |f(z)] for every f € H(U)},

and therefore B N
(6.2) 85 (pToy(K)) = Knw)

for every p > 1. Thus §5* (L) C KH(U), and since U is holomorphically convex,
67 (L) is compact, as asserted.

We finally prove that 8y(U) is a closed subset of G(U). It follows from the
proof of Proposition 6.5 that G(U) is a (DFM)-space, and therefore a k-space,
either by a result of Dineen [7], or else by the classical Banach-Dieudonné the-
orem. Thus to show that éy(U) is a closed subset of G(U), it suffices to prove
that §y(U)N L is a closed subset of L for each compact set L C G(U). But this
follows from the first part of the proof, for 8y(U)N L = &y(65(L)). The proof
of the theorem is now complete.
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Mazet [15] obtained Theorem 6.6 when E is finite dimensiorial. We have
followed his proof of the implication (c) = (d), which works for arbitrary locally
convex spaces. Mazet gave a constructive proof of the implication (d) = (c),
and then derived the implication (c) = (a) from a theorem of Barlet and Mazet
(see [13] and [14]) which generalizes the classical proper mapping theorem of
Remmert.



CBPF-NF-011/90
_]_9...

References

[1} J. A. BARROSO, M. C. MATOS and L. NACHBIN, On holomorphy versus lin-
earity in classifying locally convex spaces. In: Infinite Dimensional Holomorphy
and Applications, pp. 31-74. North-Holland Mathematics Studies, vol. 12.
North-Holland, Amsterdam, 1977.

[2] J. A. BEREZANSKII, Inductively reflexive locally convex spaces. Soviet Math.
Dokl. 9 (1968), 1080-1082.

{3] K. D. BIERSTEDT, An introduction to locally convex inductive limits. In: Func-
tional Analysis and its Applications, World Scientific Publ. Co., Singapore,
1988.

[4] J. BONET, P. GALINDO, D. GARCIA and M. MAESTRE, Locally bounded sets
of holomorphic mappings. Trans. Amer. Math. Soc. 309 (1988), 609-620.

[5] N. BOURBAKI, Eléments de Mathématiques, Topologie Générale, Chapitres 1 &
4. Hermann, Paris, 1971.

[6] G. COEURE, Fonctions plurisousharmoniques sur les espaces vectoriels
topologiques et applications a I’étude des fonctions analytiques. Ann. Inst.
Fourier Grenoble 20, 1 (1970), 361-432.

[7] S. DINEEN, Holomorphic functions on strong duals of Fréchet—-Montel spaces. In:
Infinite Dimensional Holomorphy and Applications, pp. 147-166. North—Holland
Mathematics Studies, vol. 12. North-Holland, Amsterdam, 1977.

[8] S. DINEEN, Complex Analysis in Locally Convex Spaces. North-Holland Mathe-
matics Studies, vol. 57. North-Holland, Amsterdam, 1981.

[8] K. FLORET, Uber den Dualraum eines lokalkonvexen Unterraumes. Arch. Math.
Basel 25 (1974), 646-648.

(10] A. GROTHENDIECK, Produits Tensoriels Topologiques et Espaces Nucléaires.
Memoirs of the American Mathematical Society, number 16. American Mathe-
matical Society, Providence, Rhode Island, 1955.

[11] A. HIRSCHOWITZ, Prolongement analytique en dimension infinie. Ann. Inst.
Fourier Grenoble 22, 2 (1972), 255-292.

[12] J. HORVATH, Topological Vector Spaces and Distributions, vol. L Addison—
Wesley, Reading, Massachusetts, 1966.

[18] P. MAZET, Un théoréme d’image direct propre. In: Séminaire Pierre Lelong
Année 1972/73, pp. 107-116. Lecture Notes in Mathematics, vol. 410. Springer,
Berlin, 1974.

[14] P. MAZET, Rectificatif concernant ’exposé “Un théoréme d’image direct propre”.
In: Séminaire Pierre Lelong Année 1973/74, pp. 180-182. Lecture Notes in
Mathematics, vol. 474. Springer, Berlin, 1975.



CBPF-NF-011/90
20—

[15] P. MAZET, Définition d’une application universelle sur un espace analytique de
dimension finie. In: Séminaire Pierre Lelong Année 1974/75, pp. 67-78. Lecture
Notes in Mathematics, vol. 524. Springer, Berlin, 1976.

[18] P. MAZET, Analytic Sets in Locally Convex Spaces. North-Holland Mathematics
Studies, vol. 89. North-Holland, Amsterdam, 1984.

[17] J. MUJICA, A completeness criterion for inductive limits of Banach spaces. In:
Functional Analysis, Holomorphy and Approximation Theory II, pp. 319-329.
North-Holland Mathematics Studies, vol. 86. North-Holland, Amsterdam, 1984.

[18] J. MUJICA, Linearization of bounded holomorphic mappings on Banach spaces.
Trans. Amer. Math. Soc., to appear.

[19] L. NACHBIN, Sur les espaces vectoriels topologiques d’applications continues.
C.R. Acad. Sci. Paris 271 (1970), 596-598.

[20] L. NACHBIN, On vector-valued versus scalar-valued holomorphic continuation.
Indag. Math. 35 (1973), 352-354.

[21] L. NACHBIN, A glimpse at infinite dimensional holomorphy. In: Proceedings on
Infinite Dimensional Holomorphy, pp. 69-79. Lecture Notes in Mathematics, vol.
364, Springer, Berlin, 1974.

[22] K. F. NG, On a theorem of Dixmier. Math. Scand. 29 (1971), 279-280.

(23] P. PEREZ CARRERAS and J. BONET, Barrelled Locally Convex Spaces. North-
Holland Mathematics Studies, vol. 131. North—Holland, Amsterdam, 1987.

[24] R. A. RYAN, Applications of topological tensor products to infinite dimensional
holomorphy. Ph.D. thesis, Trinity College Dublin, 1980.

[25] H. H. SCHAEFER, Topological Vector Spaces, third printing. Graduate Texts in
Mathematics, vol. 3. Springer, Berlin, 1971.

[26] M. SCHOTTENLOHER, Uber analytische Fortsetzung in Banachraumen. Math.
Ann. 199 (1972), 313-336.

[27] M. SCHOTTENLOHER, Analytic continuation and regular classes in locally con-
vex HausdorfT spaces. Portugal. Math. 33 (1974), 219-250.

[28] M. SCHOTTENLOHER, ¢-products and continuation of analytic mappings. In:
Analyse Fonctionnelle et Applications, pp. 261-270. Hermann, Paris, 1975.



