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ABSTRACT

An algorithm is developed for the exact calculation of the many spin correlation
functions of Potts model clusters which is more efficient than the standard
break—collapse method traditionally used in real space renormalisation group
calculations. The improved performance is based on a relationship which, at any
stage of the calculation, allows the replacement of certain subgraphs by single
effective edges. Our method avoids, as in the standard one, the time consuming
summation over spin states and can be very useful in series expansion and real

space renormalisation group calculations on crystal lattices.

Key-words: Potts model; Break-collapse method; Graph theory; Statisti-

cal mechanics.
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1 INTRODUCTION

The performance of sums over configurations plays a fundamental role in
problems of statistical physics. The task of examining and counting configurations
is very time consuming and alternative ways of performing such sums have been
proposed (Kasteleyn and Fortuin 1969, Tsallis and Levy 1981, Mariz et al 1985,
Tsallis 1986) for some problems in statistical mechanies which can be formulated in
a graph theoretic way. In particular, for the model we shall consider in the
present paper, namely, for the A-state Potts model (Potts 1952, see Wu 1982 for a
review), a simple method of performing configurational sums has been conjectured
(Tsallis and Levy 1981, Tsallis 1986). This method is called the break—collapse
method (BCM) and involves series and parallel relations as well as an equation
which we will call the break—collapse equation (BCE).

The BCE as given in Tsallis and Levy (1981) refers to the equivalent
transmissivity t$9(t,G) between the roots 1 and 2 of a graph G, where to each of
its edges e is associated a variable t, (called by them the "thermal transmissivity").
This equation relates t$9(t,G) to the same quantity calculated for two simpler
graphs (with one edge less) obtained from G by deleting and contracting one
edge*. Applying the BCE, for example, to the edge between unrooted vertices of
the Wheatstone bridge (see graph L of Fig. 5a) they obtained deleted and
contracted graphs (see graphs G, and G, of Fig. 5a respectively) whose equivalent
transmissivities were easily computed by the series and parallel equations. They
calculated, by this simple procedure, t$9(t,G) for this five—edge graph G without
examining the A% spin configurations or alternatively the 25=32 bond percolation
configurations represented by the partial graphs G' of G. They also mentioned
that the equivalent transmissivity t$9 ,(t,G) among the roots 1,2,....m of a graph

G could also be evaluated by the BCM,

*These graphs were called by Tsallis and Levy (1981) the *broken and collapsed
clusters”, but we prefer to follow the nomenclature of graph theory and call them
the deleted and contracted graphs respectively.
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Later on, the BCE for t%4(t,G) referred to above was proved (Essam and Tsallis
1986 - which we shall henceforth refer to as PF1 from the title “the Potts Model
and Flows I") and then extended to the partitioned wm-rooted equivalent
transmissivity 1§%(t,G), where P refers to any partition of the roots 1,2,....m of G
(de Magalhfes and Essam 1986~ which we will henceforth refer to as PF2).
Similar BCE's were also derived in PF2 for t§Yp,G) where to each edge e of G

was associated the variable p, used by Kasteleyn and Fortuin (1969).

It has been proved (PF1) that the correlation function between spins s; and s, is
proportional to t$9(t,G) and that the partition function Z(t,G) is proportional to its
denominator. More generally, it has been shown (PF2) that the correlation
function I'y, ,(G) among the components of m spins can be expressed, -in the ¢ or
p-variable, as a linear combination of the t§YG) corresponding to partitions of the
m roots of G into blocks. Thus the BCM can be applied to the calculation of
the partition function and all correlation functions. But the BCM for t§YG),
where to each edge e of G is associated a variable t, or p, has, in fact, a
restricted use since it does not apply to a graph G which results from a previous
use of series and/or parallel equations. In order to remove this restriction, Tsallis
(1986) conjectured a BCM for t99 ,(t,G) which involves equivalent (or effective)
edges whose thermal! transmissivities are ratios of multi~linear functions of the t.'s,
thus extending Tsallis and Levy's conjecture (1981). It allowed the exact
calculation of t$9 . (1,G) for complex graphs such as, for example, the two-rooted
graph shown in Fig.lh of da Silva et al (1984) which has 35 edges and 20
independent cycles. The computing time of t?g(tx,ty,tz,G) for this graph
calculated by the BCM was, for example, 200 minutes for \=3 (da Silva, private
communication) on the IBM-370 (model 158; 4Mb memory) computer. Notice that
it would be practically impossible to calculate it from its definition as spin trace

which would involve the examination of A!® configurations. This is just one
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example, among many others, of graphs with many independent cycles which
appear frequently in real space renormalisation group calculations, In fact the
BCM for a general graph has been successfully applied (Chaves et al 1979, de
Oliveira et al 1980, Tsallis and Levy 1981 and references therein, Chao 1981, de
Magalhies et al 1982, de Oliveira and Tsallis 1982, Tsallis and dos Santos 1983,
Lam and Zhang 1683, da Silva et al 1984, Costa and Tsallis 1984, Tsallis 1986) to
the calculation of critical frontiers and ecritical exponents by the renormalisation
group procedure. It has been applied to the pure as well as the randomly
bond-diluted (isotropic or anisotropic) Potts model for arbitrary and specific values

of \.

In the present paper we prove a BCE for t§%G) which applies to amy graph G.
We also derive a method for calculating t§%G) which differs from the BCM in
that we replace not only edges in series and in parallel by single effective edges
but also any subgraph L of G which has only two vertices in common with the
remainder of G and in which the internal vertices (i.e. vertices other than the two
intersection vertices) are not rooted. We call it the subgraph break—collapse method
(SBCM) and, with few exceptions, less iterations will be needed in the SBCM than

in the BCM.

It has been proved (PF1, PF2) that the multi-linear forms of the denominator and
numerater of t§3(t,G) are the respective generating functions for the flow
polynomials F(X,G'} (see PF1 and references therein) and the partitioned m-rooted
flow polynomials Fp(7\,G') (PF2). Similarly the multilinear forms of the denominator
and numerator of tf3(p,G) are respectively the generating functions for the
chromatic polynomials P()\,G") (see for example Tutte (1984)) and the partitioned
m-rooted chromatic polynomials Pp(}\,G'} (PF2). These polynomials can also be

expressed as sums over configurations (PF1,PF2) which can be evaluated in terms
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of graphs obtained by deleting and contracting edges (Forster, see note in Whitney
1932; Tutte 1954; PF2). In this paper we extend this deletion—contraction
technique from edges to subgraphs and this forms the basis of the SBCM for the
above polynomials. This is also the starting point for our derivation of the SBCM

for tg4G).

In summary, we present a powerful algorithm (the SBCM)} for computing the
expressions for the partition function and m-spin correlation functions of the Potts
model derived in PF1 and PF2. The SBCM is considerably more efficient than the
previously used BCM since it allows for the replacement of subgraphs by effective
edges at any stage of the calculation. Both the SBCM and BCM yield exact
expressions for the above functions for finite graphs which may be used either in
the derivation of series expansions or for real space renormalisation group

calculations on crystal lattices.

This paper is divided into five sections and one appendix. First (section 2) we
summarise results from PF2 concerning Z(G) and Ty, ,,(G) expressed in the
t—variable. In section 3, we derive expressions for Fp{\,G') and F(),G') from
which we obtain (section 4) the SBCM and the BCM for t§4t,G); explicit
illustrations of both algorithms are given. In section 5, we study the Xo1 limit of
our results. Consideration of this limit enables the SBCM to be extended to the
partitibned m-rooted connectedness function of percolation theory. Finally, in the
appendix, we quote the SBCM formulae in terms of the p-variable and also give
its extension to the Whitney rank function and to its generalisation, the partitioned

m-rooted rank function,
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2 MAIN RESULTS OF PAPERS I AND I,

In this section we quote the expressions obtained for the partition function (PF1)
and the correlation function I'y, (G) among the components of m spins along one
of the X special directions €,¢3,...,¢) in which the spins are allowed to point
(PF2). The extension of the latter results to the case of correlation functions
I'p(G) among the components of the m spins along several different directions
involves more definitions which can be found in Section 3.3 of PF2, Since the
t-variable has been shown to be more convenient than the p-variable (see PF2),
we shall restrict ourselves, throughout the main body of this paper, to the
t-variable. The corresponding results in the p-variable will be quoted in the

appendix.

2.1 The Partition Function Z(t,G)

Let us consider a finite graph G with vertex—set V and edge-set E. The partition
function Z(t,G) of the \-state Potts model on a graph G, whose Hamiltonian is

given by eq (2.1) of PF2 with s2=)x-1, can be expressed as (PF1):

Z(t,G) = AMVISIEI( ] [exp[(A-1)Ko] +(A-1)exp(-Kg)]} D(t,G) (2.1a)
ecE
with
D(t,G) = <\C>¢ (2.1b)

where c(G") is the cyclomatic number of the subgraph G' and the percolation
average denoted by <..>Gy, defined in eq 2.3 of PF2, is relative to the
t-variable. The "thermal transmissivity” t, (see Tsallis and Levy 1981) of the edge

e is given by:
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te = [1 - exp(-NKg)1/[1 +(A-1)exp(-NKg)] _ (2.10).

where

Ke = Jo/kpT (2.1d)
The multi-linear form of D{t,G)} in the t, variables is (PF1):

D(t,G) = z F(\,G') ﬂ te (2.2a)
G'sC ecE'’

where E' is the edge set of the partial graph G' of G (i.e. V'=V and E'<E),

F(7\,G) is the flow polynomial of G given by

F(\G) = 5 (-1)IENE') c(G') (2.2b)
G'<G

where |E\E') is the number of edges in the complement of G' with respect to G.

Notice that if t,=t for all edges ¢ of E then eq. (2.2a) becomes a polynomial in t.

22 The Correlation Function I'j; ,.(t,G)

The correlation function Iy, ,(t,G) among the components sy,84,...,8,; of the m
spins 8),8,,...8,, along one of the A\ special directions, say e, is related to the

partitioned equivalent transmissivities t§9(t,G) through:

F12...m(t.6) = <s11521...5p1>F
- (\-1)"/2 5 ¢f4(t,G) F(X,Ip) (2.3a2)

PeP (M)
where

Si1 = Sj.e1/18q1 (1e112 = 18412 = -1} (2.3b)
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and <...>'£ means a thermal average. tg%t,G) is an extension of t%9 {t.G) to

the case where not all the roots are connected among themselves i.e.:
tpa(t,G) = Np(t,G)/D(t,C) (2.3c)

with D{t,G) given by eq. (2.1b) and Np(t,G) defined by:

Np(t,G) m ¢ YP>G, ¢t (2.3q)
where
1 if the roots in the same block of the.
the partition P are connected among
themselves in G' and if roots of different
yp(C') = blocks are not connected. (2.3e)

0 otherwise

When +p(G')=1 the roots are said to be P-partitioned by G'. We write
P={B;,B,,..,.Bp} and the block B; will be said to have £; roots of type i. For
example, in Fig. 4c where P={{1,2},{3,4},{5,6,7,8,9}}, the roots of type 1,2 and 3
are represented by squares, triangles and circles respectively. In eq. (2.3a) the sum
is over the set P(M) of all partitions P of the set M = {1,2,...,m} of roots of G
into blocks which contain at least two roots. F()Ip) is the flow polynomial of the
“interface graph" Ip constructed from the partition P as follows: for i=1,..,b
associate with the block B; a vertex v, and connect it to an "external® vertex u by
an edge of multiplicity 2; (hence Ip has b+l vertices and m edges). F()\1p) is
given by:
2;-1 2

FO\Ip) = [ (O-1HI(M-1) + (-1) I/ (2.3f)
B eP

The multi-linear form of Np(t,G) is:
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-
Np(t,G) = E Fp(:,G") |'] te (2.4a)
G'eC ecE'

where the partitioned m-rooted flow polynomial is:

Fp(A,6) = 5 (-1)IENE"1 ze(G') 4p(c") . (2.4b)
G'SC

Using eqs. (2.3a), (2.3c), (2.4a) and (2.2a), Ty ,(t.G) may be expressed in the

form
I U 3. FOIPFp(AG) ] te)
G'SG PeP(M) eceE'
2., .m(t,6) = (A-1)"10/2 (2.5)
S FOLG) [ te
G'<C ec¢E’

An alternative expression for I'y ,(t,G) is

0 9 D(t,GhH)
-m/2 a—fm. a 3?1
r12 m(taG) = {(A-1) (2.6)
T D(t,Gh)

Tty .—tm-O
where G*=GUK,,, and K, is the complete bipartite graph formed by linking a
vertex vp (which does not belong to G) to the roots 1,2,....m of G. To each edge

gy, (1 = 12,..,m), of K, is associated a thermal transmissivity t;. From eqs.

(2.2a) and (2.6) an alternative form for I'j, _(1,G) may be obtained:

S OAFOLG'UKy ) [T ted
G*'SG ecE’
2. w(t,.G) = (A-1)-1/2 . (2.7)
S O(FOLG) T te)
GG ecE’

We shall develop in the subsequent sections SBCM's for D(t,G), Ngt,G) and
t69(t,G) which provide a powerful technique for evaluating the above expressions

for Z(t,G) and Iy ,(t,G). We shall also discuss the BCM for 1§4(t,G).
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3 EXTENSIONS OF THE DELETION-CONTRACTION RULES FOR Fp()\,G)

and F()\,G)

We now extend the deletion—contraction rules for Fp(\,G) (see eq.(4.14) of PF2)
and F()\,G) (see eq. (4.8) of PF1) to the cases where, instead of a single edge e,
we consider a subgraph L of G which has only two vertices in common with the
remainder of G. As we will see in the next section, these extensions form the

heart of the proof of the SBCM's for Np(t,G) and D(t.G).

In this section we shall assume, unless otherwise stated to the contrary, that G is a
two-reducible m-rooted graph (Essam 1970) which is the union of two subgraphs L
and H subject to the following conditions: (i) they intersect only at the vertices i
and j (there are no edges in common); (ii) one of them, say H, contains all of

the m roots of G. The vertices i and/or j may be rooted or not (see Fig 1).

3.1 The Subgraph Break—Collapse Equations (SBCE's)

In order to derive the extended deletion-contraction rule for Fp(».G), ﬁrhich we
shall call the subgraph break—collapse equation (SBCE), we shall examine how the
quantities yp(G'), ¢(G') and |E’) which appear in the definition of Fp(x,G) (see
eq. (2.4b)) relate to the corresponding ones in the partial graphs L' of L and H'
of H. We shall suppose for the moment that i and j are not rooted, as shown in
Fig. 1a.

First let us see what is the relationship between yp(G') and yx(H'). If there is no
path from { to j on L' (i.e. ¥:,{(L)=1) then in order that the m roots are
P-partitioned by G' (i.e. yp(G')=1) they must also be P-partitioned by H' (i.e.
vp{H')=1) since no root of H' can be connected to another root of H' via a path

on L' (see the first parenthesis on the right hand side of the equality sign of Fig.
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2). If there is a path between §{ and j on L' (i.e. -yij(L")=1; see the last
parenthesis in Fig. 2) then the condition «yp{G')=1 can be satisfied in the following
cases: (i) 4p(H")=0 or (i) yp(H") = 1. In case (i) some roots of H' must be
connected to other roots of H' via paths on L' (see the penultimate graph of Fig.
2). In both cases (i) and (ii) the m roots are P-partitioned by the
bicollapsed—graph graph H';_; obtained from H' by identifying the vertices i and j
(without deleting any edges). Hence, for every partial graph G* of G the

following identity holds:

vp(G') = ¥i ,j(L' Yyp(H') + ‘yiJ(L' )‘yp(Hi_j) (VG'=H'UL'<G) (3.1)

Now let us examine how ¢(G") relates to ¢(H') and c(L"). If Ti,j(L')=1 then
no new cycle can be formed when we consider the union of L' with H', i.e. ¢(G")
is just the sum of c(L') and c(H') (see the first parenthesis on the right hand side
of the equality sign of Fig. 2). If -yij{L') = 1 then we have to consider two
cases, namely (a) v;{(H') = 1 and (b) 7if{H')<1. In case (b), the union of paths
on L' and H' between i and j gives rise to an extra cycle in G' = L'UH’, i.e.
¢(G")=c(L")+c(H")+1 (see the last graph of Fig. 2). In case (a) no new cycles
appear and ¢(G') is just the sum of ¢(L') and c(H') (see the penultimate graph of
Fig. 2). It is easy to verify that in both cases (a) and (b), ¢(G') is equal to the

summ of c(L') and c(Hi'_j). It follows therefore that:

c(G') = v, j(L ) [c(H') + e(L')] +yy (L' c(H]_j) + c(L')]

(VG'=H'UL'%C) (3.2)

Concerning the number of edges |E'|, since H' and L' have no edges in common

and since by definition 1E(H{,;)I = (E(H")) it follows trivially that



~11- CBPF-NF-011/87

IE"1 = §E(H')1 + tE(L')1 = 1E(Hj.j)1 + 1E(L')1 (VG'-H'UL'SG) (3.3)
Combining egs. (3.1), (3.2) and (3.3) we get that:

yo(G' (G Y- E\E" =
i LN Y1) EMNE(L?) 1 (1) a6 (H )1 ) LE(HNE(H) 1+
e(L') (_yy FE(LNEL") ) yaCCHE=p) (1) VECH 2 \ECH] 1)1

i, JELO T

(VG'=H'UL"'<G) (3.4)

Summing over all partial graphs G' of G we get (cf. eq. (2.4b)) the following

SBCE for Fp(A,G):
Fp()\,6) = Fy j(A,L)Fp(A,H) + Fy (3, LYFp(),Hj_) (3.5)

Notice that the arguments used to derive the above SBCE apply also to the cases
where i and/or j are roots except if i and j are roots of different types. In this
latter  situation, if ;L") = 1 the condition +ypG')=1 cannot be satisfied.

Nevertheless eq. {3.1) continues to be valid since

'yp(H{_j)-O for i and j are roots of different types (3.6)
and the right-hand-side of eq. (3.1) correctly reduces to the first product.
Furthermore, from eqgs. (3.6) and (2.4b) it follows that

Fp(A,Hjuj)=0 for i and j are roots of different types (3.7)

and the right hand side of eq. (3.5) correctly reduces to the first prbduct.

Consequently eq. (3.5) applies to all the four situations in Fig. 1. In the
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construction of H;_;, the collapse of i and j leads to: (i) a root if at least one of
them is a root, (ii) an unrooted vertex if both i and j are unrooted. Observe

that when i and j are the only roots of G and P contains a single block then:

Fij(h,Hi_j) - F(K,H[_j) (3.8)
Since a partial graph G"=L"UH" of G'sH'UL' is also a partial graph of G=HUL, it
follows that eq.(3.4) holds also for all G"<G'. Consequently eq.(3.5) remains true
for any partial graph G' of G, namely
Fp(»,G') = Fy (A L')Fp()\H') + FijjO0LLO)Fp(M HELg) (VG'sG) (3.9)
When L is a single edge e between i and j eq.(3.5) becomes

Fp(A,HUe) = Fp(k,Hi_j) - Fp(\,H) (3.10)
which can be written equivalently in terms of G=HUe as

Fp(2,G) = Fp(\,GY) - Fp(»,GY) (3.11)
where GY and G are the respective graphs obtained from G by contracting and
deleting the edge e of G. [Eq.(3.11) is the deletion—contraction rule obtained
previously {see eq.(4.14) of PF2),
Eq. (3.5) can be written in terms of F(\,L) and Fy(\ L) by noticing that:

Fi’j(k,c) = F(},G) —Flj(k,c) YG (3.12)

which is a consequence of the identity Y, {G')+y;{G")=1 and the definitions (2.2b)
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13-
and (2.4b). Combining eqs (3.5), (3.10) and {3.12) we get the following
alternative SBCE for Fp(\,G):

Fp(),G) = F(X,C)Fp(x,H) + Fyj(\,L)Fp(),Hle) (3.13)

In the particular case of P={ij} (see Fig. 4e) we can write the SBCE for

Fi(\,HUL) in the following form symmetric in H and L

Fj(\MHUL) = Fy(\L)FOLH) +F3(0\HF(LL) +

+()\-2)F1j()\,L)Fij()\,H) (3.14)

where we have used egs. (3.5) and (3.8), the unrooted version of eq: (3.10) and

the following relation (see eq. (4.6) of PF1):

FiJ(X.L) = F()\,ClUe)/(\-1) (3.15)

The SBCE for F(\G) can be deduced from eq. (3.4) by imposing that yp(G')=1

(and consequently -yp(H')=yp(H;_j)=l) for every graph G'cG. We get thus:

F(A\,G) = Fi’j()\,L)F(k,H) + Fij()"L)F()‘*Hi—j) {(3.16)

or alternatively

F(\,G) = F(\,L) F(\,H) + Fij(h,L)F()\,HUe) (3.17)

H we use eq. (3.15) and the unrcoted version of eq. (3.10) we can rewrite eq.

(3.17) in the following forms symmetric in H and L:
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F(A\,G) = F(A,LYF(\,H) +()\-1)Fij()~,L)Fij()s,H) (3.18)
or in terms of only unrooted flow polynomials

F()\,G) =

[F(K.L)-F(X,Liu_])}[F()\;H)-F(X,Hj-j)]/(?\-l) +F (A, LYF() H). (3.19)
Notice that egs. (3.3) — (3.19) are also valid for any partial graph G' of G.

Now let us interpret eq. (3.17) which is illustrated schematically in Fig. 3. Let us
call &,, the value of the net flow from L to H at the intersection vertex i
(which, by conservation of "fluid" mod-X, must be equal to the value of the net
flow mod-x from H to L at j). The proper mod-X flows in G = HUL
may be partitioned into two sets: (a) proper mod-\ flows in which &, =0 and
(b) proper mod-X flows in which &_,#0. The proper flows on G which satisfy
condition (a) may be counted by combining any proper flow in H with any
proper flow in L  and hence the total number of such flows will simply be
F(\H)F(»,L) (this is illustrated by the pair of graphs just after the equality sign in
Fig.3). The proper flows in G subject to condition (b) may be counted by
considering the proper flows on the graph G obtained from G by replacing L by
a single edge e. Any proper mod—\ flow on G can be combined with any proper
mod-x flow on L which is subject to a non-zero external flow in at j and out
at i. In PF2 (eq. (2.24)) we showed that Fi]—()s,L) could be interpreted as just this
number of flows. Consequently the total number of proper mod—)\ flows on G with

B,e?0 is given by F(A\,G)Fj(A,L) (see the last pair of graphs of Fig.3).



3.2 Series combination of graphs.

When two graphs G, and G, intersect at only one vertex i, i.e. when G; and G,

are in series, then (cf, property (ii) of F(\,G) in PF1):

F()\,G1UGy) = F(A,Gp) F()\,Gp) (3.20)

The series equation for Fp(A,GUG,) depends on the distribution of the roots of
GyUG,. There are four cases to consider which are pictorially illustrated in Figs.
(4a), (4b), (4c) and (44).

(a) There are no roots in G, except possibly i. This case is covered by property

(v) of PF2 and

Fp(»,CqUG2) = Fp(},61) F(X,62). (3.21a)

(b)There are roots in both G; and G, but each block of P is contained within

either G; or G, It is again possible to factorise Fp and

Fp(\,G1UGy) = Fpi {(X,G1) Fpn(X,G2). (3.21b)

where P' and P" are the restrictions of P to G; and G, respectively.

(c) Exactly one block of P contains roots in both G, and G, The result is the
same as (b) except that if i is not a root then it must be converted into a root of
the same type as the common block before calculating P* and P%,

{d) If more than one block of P contains roots in both G, and G, then ygG') is

zero for all partial graphs of G,UG; and so Fp(),GUG,)=0.
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4  THE SBCM and the BCM FOR t§%(1,G).

Having derived the SBCE's for F(\,G') and Fp(),G'), we now deduce the SBCE's
for their respective generating functions, i.e., the denominator D{(t,G) and the
numerator Np(t,G) of tp4(t,G). A comparison of the formulae which we obtain
for tg%t,G) with those of Tsallis and Levy's paper (1981) leads to the SBCM and
BCM. Both methods allow the calculation of Iy (t.G) (eq. 2.3) and Z(t,G) (eq.
2.1a) without having to examine all the subgraphs G' of G which contribute to

D(t,G) (see eq. 2.2a) or to Np(t,G) (see eq. 2.4a). -

4.1 The SBCE and the BCE for t§%t,G).

Combining egs. (2.4a) and (3.9) we get the following SBCE for Np(1,G)!

Np(t,G) -‘Hi’j(t,L)Np(t,H) + Nij(t,L)NP(t,Hi_j) {4.1)

Similarly we get (cf. egs. (2.2a) and (3.16) applied to G') for D(t,G):

D(t,C) = Ni,j(t,L)D(t,H) +Nij(t,L)D(t,Hi_j) (4.2)

where N;(t,L) relates to Nj;(t.L) (cf. egs. (3.12), (2.4a), (2.2a)) through

Ni,j(t,L) = D(t,L) - Nij(t,L) (4.3)

Notice that when i and j are roots of different types then eq. (3.7) holds for all

H!

i=j

SHi.;.  Therefore

Np(t,l-li_j)—-o if i and j are roots of different types. (4.4)
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If i and j are roots of the same type and G has no other roots then eq. (3.8)

applies for all H!_.cH

1aj and so

jmj

Nij(t-ﬂi-j) - D(t!Hi—j)' 4.5)

As a consequence of eqs. {3.10) and (3.15) it turns out that Nii(t,G) (see eq.

(2.42)) is related to D{1,G) through:
Nij(t.6) = [D(t,Gimp) - D(,6)1/(r-1) (4.6)
= [D(t,GUe)-D(t,G)]/[(r-1)t,] (4.6')
where ¢ is an extra edge between i and | whose thermal transmissivity is ¢,

When P={ij} (see Fig. 4e) we can write the SBCE for Ni{t.GG7) (eq.4.1) in the

form symmetric in G, and G,:

Nij(t,GlUGz) = Nj{t,G)D(t,Gy) + Nii(t,.Gp)D(t.Gy) +

+ ()\-2)N1j(t,Cl)Ni‘](t,Gz) 4.7)
where we have used egs. (4.3), (4.5) and (4.6). Similarly, combining eqgs. (4.2),
(4.3) and (4.6) we obtain the following symmetric form of the SBCE for
D(t,G,UG,):

D(t,G1UG2) = D(t,G1)D(t,G2) + (A-1)Njj(t,C1)Ny j(t,Cp) (4.8)

From the last two equations and from eq. (2.3c¢) we get the following formula for

two graphs in paraliel as shown in Fig.de:
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” ,G UG2)

Nij(t ,G1)D(t ,G3) +Nij(t ,G2)D(t,Gy) +()~-—2)Nij(t ,Gl)NiJ(t ,62)

D(t,61) D(t,Gp) +(A-1)Ny(t,G1)Ny (t,Gp)

(4.9)

or in terms of equivalent transmissivities;

. j(t C ) +t j(t c Y +(n- 2)t j(t ,G )t”(t G2) .
tij(t,CIUC2) - (4.9%)
1+ (n- l)t j(t G )t j(t (;2)

which reduces, for two edges e; and e, in parallel (i.e. Gy~¢,;,Gyre,) to eq. {23) of

Domb (1974), namely:

t€9(t,eqVez) = [t1 + t2 + (A=2)t1t3]/[1 + (A-1)tqt3]) T (4.10)

In the general case of n graphs G, (o=1,2,...,n) in parallel with equivalent
transmissivities N, /D, between i and j, the successive application of egs. (4.8) and

(4.7) leads to:

n
D(t, U Gy = A1[Xx(t) +(a-1)Y(t)] (4.11a)
o=1
and
n n
N(t, U Gy = D(t, UGy) ~ Y(t) : (4.11b)
o=1 o=1
where
n
X(t) = [] [Dg+ (A-1)Ng] (4.11¢)
ow]1
and
n
Y(t) = [[ [Dy N, (4.114)

a=1
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We see from eqs. (4.9') and (4.10) that the parallel equation for graphs has the

same functional form as the corresponding one for edges.

From eqs. (4.1), (4.2), (4.3) and the definition of t§%t,G) (eq. 2.3¢) we obtain the

following SBCE:

[D(t,L) -Nij(taL)]NP(tsH) +Nij(t’L)NP(thi-j>

eq -
tp(t,6)

[D(t,L) -Nij(tsL)]D(t:H) +Nij<trL)D(tsHi_j)

or equivalently

i1 ~t?3(t,L)]NP(t,H) +t:?(t,L)NP(t,Hi_j)

eq -
te {t,0)

(1 -t%%¢, L) 10,0 +¢%9¢e ,L)D(e K

1] 1 1=3’

When L is a single edge e eq. (4.12') reduces to:

(1-t) Np(t,H) + ¢ No(t )
t;q(t ,HUe) =

(1 -te) Dt ,H) + teD(t,l-li_j)

or in terms of G = HUe:

6 14
(1 -te) Np(t,(:e) + teNP(t,Ge)

t;q(t,c) -
8 Y
(1 -te) D(t,Ge) + teD(t,Ge)

(4.12)

(4.12")

(4.13)

(4.13")

which recovers our previous result (eq. (5.2) of PF2) and extends the BCE for

t$9 m(t.G) of Tsallis and Levy (1981).
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4.2 Series equations.

The equation for D(t,GUG,) where G, and G, are in series is given by (cf.

property (ii) of D{(G) in PF1):

D(t,G1UG) = D(t,G1)D(t,G2) (4.14)

The series equation for Np(t,G,UG,) when all roots belong to G, as in Fig. 4a is

(cf. property {v) of Np(t,G) in PF2):

Np(t,GqUCy) = Np(t,Gy) D(t,Gy) (4.15a)

It is easy to show, using the results of section 3.2, that the series relation for

Np(t,G) corresponding to the cases (b) and (c) is:

Np(t,G1UGp) = Npr(t,G1) Npr(t,G3) (4.15hb)

and in case (d)

Np(t,G1VGy) = 0, (4.15¢c)
The series relations for t§4t,G,UG,) are given by the ratios of eqs. (4.15) and
(4.14). Notice that in case {c¢) particularised for two edges e, and e, in series (i.e.

m=2, G;~e; and Gj~e;) we recover a known result (Domb 1974, Yeomans ad

Stinchcombe 1980, Tsallis and Levy 1981), namely:

t$9(t,eqleq) = tqta (4.18)

where t; and t; are the thermal transmissivities of the edges e, and e, respectively.



CBPF-NF-011/87
w21

4.3 Effective edges.

A comparison between egs. (4.12') and (4.13) shows that the SBCE for
t§%t,G=HUL) is equal to the BCE for t§Xt,G=HUe,,) where G is the graph
obtained from G=HUL by replacing L by an effective edge e,y whose effective
thermal transmissivity t,q= tﬁl(t,eeﬁ) between i and j is equal to tft,L). In other

words, eq. {4.12) is equivalent to the following effective break—collapse equation

[Deff_Neff:l N(t’ce ) +NeffN(t'Ge )

t53(t,8) - eff eff (4.17a)
[Dypp-Nopp] D(E.Gg ) +N o D(t,E] )
eff eff
where
Noff = Nij(t’eeff) - Nij(t,l..) {(4.17b)
and
Defs = D{t,eopg) = D(t,L) (4.17¢)

When P has just one block, eq. (4.17a) reduces to the BCE conjectured by Tsallis
(1986).

Furthermore the series equation for t$9(t,G;UG,) when the roots 1 and 2 belong
respectively to G; and G, (see egqs. 4.15c and 4.14) is the same as the one for
t$9(t.egesVeidss) (see eq. 4.16). Here el is the effective edge corresponding to G,
with an effective thermal transmissivity ti;®mN2is/Diee =tf9(t,elr) given by t£4t,G,)
with a corresponding definition for el Similarly the parallel equation for
Tj(t,G|UG;) (eq. 4.9') is the same as the one for 1Fj(t,eegrlecs) where
tFj(teee)=ti(t.Gy) and tP{(t,ee)=tPX1,Gy) (see eq. 4.10). Therefore the series and

parallel equations for effective edges egy and  egg, whose effective thermal
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transmissivities are ratios of multilinear functions in t's (which we shall represent

respectively by Nig/Djy; and Njgg/Dly), are given respectively by:

s Neer Negr

A p— (4.18a)
] ]
Degf Degr
and
P Neer Perr ™Merr Depp + (32N pp Nopo
tel;'f - (4.18b)
Digr Dopp + OA-DIN e Nope

If we apply eq. (4.17a) recursively then effective edges will appear also in Gg and
Gl Therefore the functions Np and D which appear in eq. (4.17a) can be

respectively defined by egs. (2.4a) and (2.2a) with t, replaced by t{}. .

We conclude therefore that in the calculation of tp(t,G) (and hence of the
correlation functions) we can always replace a subgraph L of G of the type
shown in Fig. 1 by a single effective edge eef f with an effective thermal
transmissivity 1gp=Ng/Dysr where N and Dy are given by egs. (4.17b) and
(4.17¢c) respectively. Notice that when L=G this result reduces to a previous one
(PF1) showing thus that eq. (3.16) of PF1 remains valid even in the presence of
other spins which interact with s; and s;. When L has neither edges in series nor
in parallel we will call the operation of replacing L by an effective edge

"subgraph replacement®,

The results derived in this section lead to two methods for computing 1§%t,G)
which we shall describe below namely: the subgraph break—collapse method

(SBCM), and the break—collapse method (BCM).
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4.4 The SBCM for tg4(t,G)

The SBCM for tp%t,G) consists essentially in applying successively a combination
of: (i) the relation for graphs in series (ii) the relations for effective edges in
series (eq. 4.18a) and in parallel (eq. 4.18b), (iii) the subgraph replacement, (iv)
the effective BCE (eq. 4.17a). We can compute t§%t,G) for a given m-rooted
connected graph G and a given partition P={B,B,,....By} of the roots using a
recursive language (e.g. PL1 or PASCAL} and a recursive procedure T(G,P,N,D).
In this procedure we assume that all the graphs are decorated, i.e. to each edge
e=[i,j] we associate a pair (N,D, where NelNij(t,e) and Da=D(t,e} are the
numerator and denominator of the effective thermal transmissivity te;= tft,e). For
a "non-effective” edge e this pair is just (t,1), but for an effective edge both N,
and D, are multilinear functions of the t,'s whose coefficients are polynomials in

A,

The inputs of T(G,P,N,D) are the above "decorated” graph G and the partition P
and the outputs are the numerator N and denominator D of tg%t,G). When P is
the null partition Py (i.e. when there are no roots at all) this procedure calculates
only D and makes N = D for reasons which we shall see later, The main steps

of T(G,P,N,D) are the following:

I} Split into pieces

Find the 2 articulation points a3,a3...,ag of G, and split G at these points into r
pieces G,G,,...,G; (using, for example, the algorithm described by Tucker(1980)).
In order to find the partitions P, of the roots of Gy we proceed in the following
way. First, whenever an articulation point a; (j=1,...,2) belongs to any path
connecting roots of a type i (i=1,2,...,b} we transform a. into a root of type i, If

]

any a; becomes a root of two or more types then eq. (4.15¢) holds and we need
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to calculate only D{t,G). In this case we set KEY=0, ignore all roots of G and
make P,=P, for all values of k (k = 1,2,..r). Otherwise the partition P, is
defined by the blocks of roots of the same type which belong to G, If Py has
one unique block with a single root then make P =P,,. For example, the
respective partitions P; and P, of the roots of G; and G, in the cases shown in

Figs. (4a), (4b), (4c) and (4d) are respectively:

Py = {{1.2},{3.4}1.{5}}; P, = P,

Py = {{1,2}, {5,6,7}; P, = {{3.4}, {8,5}}
P, = {{1.2}, {5.6,.i} P, = {{3.4}, {i.8.9}}
P,.

¥

P,

Py = Py,

II) Calculation of Ny and D,.

For each piece Gy do the following:
While 1V(G1>2 and (a), (b) or (¢) is possible do the first one which is

possible,

(a) Edges in series.
Replace two edges e,y and efy in series with respective effective transmissivities
Neg#/Dogr and NZ/Dier by a single edge with effective transmissivity given by eq.

(4.18a).

(b) Edges in parallel.
Replace two edges el and ey in parallel with respective effective transmissivities
Nost/Degs and NZ:/Dys by a single edge with effective transmissivity given by eq.

(4.18b)
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(c) Subgraph replacement.

(c1) Look for an articulation pair {i,j}, breaking G; into the subgraphs L, and
H; such that HynLy={i,j}, HyUL,=G,, all the roots belong to H, (except possibly i
and j) and the number of edges in Hy and L, are as nearly equal as possible,

(¢2) Call T(Ly {ij},NLy,DLy).

{c3) Construct G, obtained from Gy by replacing L, by a single edge e with

effective transmissivity NL,/DL,. Replace G, by G,.

(d) Break—Collapse.

I 1V(Gy)1>2 then do the following, else do (e)
(d1) Look for one edge e=[i,j] of E(G,) where the sum of the number of edges
incident with i and those incident with j is the maximum possible. The thermal
transmissivity of e is NJ/D,.
(d2) Construct G§ from G, by deleting the edge e and call T(GSP,,NSD,?%).
(d3) Construct Gy and Py from G.% and P, respectively by identifying the vertices i
and j. If PY has a single root or if i and j are roots of different types then set
Py=P,. Call T(GY Py NJY,DY).
{(d4) Check if i and j are roots of different types. If so set NY=0 (cf. eq.4.4).
(dS) Set (cf. eq. 4.17a)

Dy = (D, -NJ*D} + N*DY

and

Ny

(D, -N*N§ + NNy if P,#P,
else

Nk = Dk.
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(¢) Terminal Conditions.

Check if Gy is in a terminal condition, i.e. we know N; and D, explicitly. This
happens when Gy consists of n (n>1) edges e, (o=1,2,...,n) in parallel with
effective thermal transmissivities N, /D, Set D, equal to the right hand side of
eq. (4.11a) and N, equal to the right hand side of eq. (4.11b) or (4.11d)
according to the respective cases where the two vertices of G, are roots of the

same type or not.

IOI) Calculation of N and D.

After computing Ny and D, for all values of k (k=1,2,...,r), set:

n
D= [] Dy ’ (4.19a)
k=1 .
and
n
N = ]} Ny if P# Py (4.19b)
k=1
else
N =20 if KEY=0 (4.19c)
or N=-=D if KEY=1, (4.19d)

Notice that eq. (4.19b) is true only because the procedure sets Ny = D when
P,=P,; otherwise we would have (cf. eq. 4.153) to replace N, by D, whenever Py

was equal to the null partition.

It is worth emphasizing that a similar SBCM holds for the calculation of Fp()\,G)
and F(\,G). In this case Fp()\,G) and F()\,G) play the same role as Npyt,G) and
D(t,G) and to each edge e we associate the pair (Fij(k,e),F(k,e)) instead of

(Nj;(t.e),D(t,e)). For a npon-effective edge this pair is equal to (1,0). All the



CBPF-NF-011/87
-27-

formulae remain valid providled we replace N, and D, by F{) and F(o)

respectively.

4.5 An illustration of the SBCM for tpd(t,G)

Figure 5 illustrates the SBCM described above by the calculation of t%9(t,G) for a
three—rooted graph G whose edges have the same thermal transmissivity t,=t VeeE.
The equivalent transmissivities which appear there are defined as follows

ty = [2¢2 + (A-2)t4]/11 + O-1D)td) (4.20a)

tp = [2t +O-2)t2]/[1 + (A-1)¢2] (4.20b)

4t +6(0-2)t2 +4(A2-303) €2 +(a-2) 022242t
t = (4.20c)

v
1 +6(0-13t2 +4(A-1) (A-2)t> +(A-1) (\2_3r43) ¢4

2¢2 +2¢3 sso-2)t? +(-2) -3y 5

tg = tfg(t,L) - (4.20d)
1 20-1¢° +-1t? 201y 0-2)¢3

3 10-2t? o-1)ed

+(532-190+19)¢% +(0-2) (A 2-4r45)t 7]
¢ - (4.20e)

[3t2 +2¢

[1 4201t 430-1t? ao-1)e3
+5O-1 - t8 + -1 (-2) (-3t 7]

The effective thermal transmissivity t; was calculated first in order to replace L by
a single edge, generating thus the graph G which appears on the left—hand-side of

figure 5a.
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Combining the results of Fig. 5b (where 7=t and 7,7t)) with the BCE (eq 4.17a)
we get the following equivalent transmissivities for the graphs generated by the

application of the SBCM to t$94(t,G):

[t -t2 -3¢3 2@2n-1e? —(6r-15)¢°
+(an-11)t8 a9yt ~(6r-13)t% v200-2)¢7)
t13,3(¢.Cg)= ; p ' p (4.21)
[1 +2(0=-1)t7 +6(X-1)t +{(A=1)(0+2)t
A20-0 -2t 120-1) 02-303)¢]
+O-1) (A 2-190+19)¢ 3 +(0-1) (0-2) W Z-4r45) ¢ 7

[2t +(x-6)t2 —2()\-1)t3 +(3);+2)t4 +2()\2-1l'm+15)1:5
+(-8224557-82)t5 +2(602-33n+43)t7

eq +()\-2)(—8)\+21)t8 +2()\-—2)2t9]
t12,3(t'65)- (4.22)

(1 220-Dt2 201t +027n-8) ¢!

+(0-1) (130-14) > 42(0-1) (W Z+110-25)¢0

+200-1) (1532500459 ¢ 7 +(A-1) (N3 -57n
+(O-1) (\-2) =622 14r-11) ¢

2+122h-8? It 8

Combining eqs. (4.21), (4.22) with eq. (4.17a) we finally get that:

Nygy(t,G) = t +(x-8)t3 +4t4 —~(SA-18)t5 +2(A2-5a+2)t6
—(8)\2-550+80)t7 +4(3In2-192+27)t3
-(832-450459)t9 +2(2-2)(1~3)t10 (4.23a)

and

D(,G) = 1 +(-113 +6(x-10t4 +2026x-20t53 +8(7A-1)(3n-5)t6
HO-DOZA-5)T +(2-1)(3332-1312+131 )18
+(A-1)(10A3-6822+1541-116)t9

+(A-1) (A-2)2(22-5)\+8)¢10 (4.23b)
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Notice that the coefficient of t!E'l in D(t,G) (cf eq. 2.2a) is given by the sum of
the F(A,G') corresponding to all the subgraphs G' with |E')| edges, each of which
belongs to a cycle (see section 6 of PF2).  For example, the coefficient of t3 in
eq. (4.23b) is the sum of the flow polynomials corresponding to the four subgraphs
shown in Fig. 6. In the case of Ny,4(t,G), the coefficient of t!E'! (cf eq. 2.4a) is
the sum of the Fj,3(\.G') corresponding to all the subgraphs G' with (E’) edges
which have no "dangling end” and in which 1 and 2 are connected but not via 3
(otherwise vy,5(G") would vanish for all G"<G"). For example, there are only
seven subgraphs G' (see Fig. 7) which contribute to the coefficient of t3 in eq.

{4.233a).

46 The BCM for t§%(t,G)

The BCM for tf9(t,G) consists in combining: (i) the series equation for graphs;
(ii) the equations for effective edges in series and in parallel; (iii) the effective
BCE (eq. 4.17a). Unlike the SBCM, it does not search for the mentioned pair
of vertices {ij} which appears in the "“subgraph replacement®, Fig. 8 shows
schematically the application of the BCM to the calculation of t$9 ,(t,G)
corresponding to the same graph used in the illustration of the SBCM, In this
figure, t, and tp are defined by egs. (4.20a) and (4.20b) while ty, and tg are
respectively
3.2 130-23¢% +(3%-3043)

t = (4.24a)
w . 4 6
+3{(x-1)t  +{X-1)(X-2)¢

and

st +4(n-2)t3 +O0F2n-6)t? +4(n-2)2t 3+ 0350 24100-7) 8

¢ - (4.24b)
1 120-De2O-D Ot 140-1) -2t +(-1) (1-2) 218
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Combining the results of Fig. 8 with the effective BCE we obtain the expected

expressions (egs. 4.23) for Np4(t,G) and D(t,G).

Comparing figs. 5 and 8 we see that for this two-reducible graph the BCM
necessitates the calculation of the equivalent transmissivities of more graphs (23)
than does the SBCM (17 graphs). Fig. 8 shows the application of the BCE 7 times

while in fig. 5 one "subgraph replacement™ is made and the BCE is used four

times.

When the partition P of the m roots has only one block, it is possible to construct
a BCM for t%9 ,,(t,G) without using the split procedure described in step I of the

last subsection (Tsallis 1986).

5 THE SBCM FOR BOND PERCOLATION.

In this section we consider the Mol limit of our formulae in order to obtain results
for the connectedness functions of bond percolation theory. As we have seen in
Section 7 of PF2, the flow polynomial vanishes for A=1 (except for the null graph)
and Fp(1,G) is the partitioned d-weight dp(G) (cf. eq. (7.6) of PF2) which is a
generalisation of the ordinary d-weight which occurs in the expansion of the pair
connectedness {see, for example, Essam 1971b). In this limit, the ¢ and
p-variables become equal, and t§%t,G) reduces to the partitioned m-rooted
connectedness Cp(p,G) which generalises the pair connectedness C,,(p,G) which

appears in bond percolation.



. CBPF-NF-011/87
31—

5.1 Main formulae dp(G).

From eq. (3.13) we get the following SBCE for dp{G):

dp(G) = dj j(L)dp(HUe) (5.1)

The series equations corresponding to the cases illustrated in Figs. (4a); (4b) and

(4c); and (4d) are respectively (cf. eq. (3.21)):

dp(G1UGy) = 0 (5.2a)

dp(G1UGy) = dp+(Gy) dpu(Gz) : (5.2b)
and

dp(G1UGy) = 0 (5.2¢)

From eq. (3.14) we get the following equation for parallel combination

dy j(G1UG) = -d;(Gy)dy§(Ga) (5.3)

Egs. (5.1), (5.2c) and (5.3) agree, when m= 2 and P has a single block, with

known results (Essam 1971b),

5.2 The SBCM and BCM for Cp(p.G).

Considering now the probability Cp(p,G) that the m roots of G are connected in
blocks according to the partition P, we can see from eqs. (4.1), (4.3) and egs.

(7.2) and (7.3) of PF2 that it satisfies the following SBCE:
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Cp(p.C) = [1 - Cyj(p,LYICp(P. W) + Cqj(p,LICR(p,Hi—j)  (5.4)

which, for P={12}, recovers eq. (3.11) of Essam (1971b, referred to as the edge

substitution equation for the pair—connectedness).

Eq. (5.4) can be interpreted as follows. Cp(p.G) can be written as the sum of
the probabilities of two disjoint events: (a) the probability P, that the roots of G
are P-partitioned and that i and j are not connected in L; (b) the probability Py,

that the roots of G are P-partitioned and that i and j are connected in L,

According to probability theory, the probability P(eyNoy) that two events o and o,

occur simultaneously is given by

P(opNay) = Plogioy) Ploq) (5.5
where P(oy) is the probability that event o; occurs and P(ajley) is the conditional
probability that event o, occurs given that a; occurs. In case (a), Pylay
represents the probability that i and j are not connected in L (hence
Pa(e)=1-Cy5(p,L) ), and Pylejley) is the probability that the roots of G are
P-partitioned given that i and j are not connected on L ( P,(o;l0)=Cgp,H) since
in this case the roots of G must be P-partitioned on H itself). In case (b), Pyeyp
is the probability that i and j are connected on L (hence Py{x)=Cifp,L) ), and
Pylon1oy) is the probability that the roots of G are P-partitioned given that i and
j are connected on L. This conditional probability is equal to Cp(p,Hi.j) since as
we have seen in Section 3.1, when w;{L')=1 we need to consider the connections
among the rocts of H!

i=}

The equations for series combination corresponding to Figs. (4a); (4b) and (d4c);
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and (4d) are given respectively by (cf. eq. (4.15) and eqgs. (7.2) and (7.3) of PF2):

Cp(p,G1UGy) = Cp(p,Cq) (5.6a)
Cp(p,G1UGy) = Cpi(G1) Cpn(C2) (5.6b)
Cp(G1UGy) = 0 (5.6c)

The parallel equation for Cil(p,G) can be written as (cf. eq. (4.7) and eqgs. (7.2)

and (7.3) of PF2):

1 - €4§(G1UGy) = {1 -Cj (6 1[1 -C5(Gp)] - S (5.

Eqgs. (5.6c) particularised for P={ij} and eq. (5.7) are respectively the same as
eqs. (3.3) and (3.1) of Essam (1971b).

The above formulae may be used, instead of the corresponding transmissivity
equations, in the algorithm of section 4 to define the SBCM and BCM for
Cp(p,G). The recursive procedure T(G,P,N,D} is replaced by CO(G,P,C) which has
only one output C, the partitioned connectedness, instead of the pair N,D. Also
only one multilinear function, the equivalent pair connectedness is associated with

each edge of G.
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APPENDIX. THE SBCM FOR OTHER QUANTITIES.

Let us first quote very briefly previous results (see PF2) expressed in the p

variable of Kasteleyn and Fortuin (1969).

The partition function Z(p,G) is:

Z(p,G) = { J| exp[(A-1)K.1 ) D(p,G) (A.1a)
ccE
with
D(p,G) = <>“">G,p (A.1b)

where (G’) is the number of components of G* and p, is given by

Pe = 1 —exp(-2Kg). (A.1c)

The multilinear form of D(p,G) is

D(p,G) = T (-E'V POLGY) [ pe (A.2a)
G'eC ecE'

where P(\,G) is the chromatic polynomial of G with A colours given by

P(2\,G) = § (-1)1E"1 xo(C") (A.2b)
G'SC

F2 m(p,G) is given by eq. (2.3a) where now:
tpd(p,G) = Np(p,G)/D(p,G) (A.3a)

with

Np(p,G) = ¢ PG, p (A.3b)
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The muitilinear form of Np(p,G) is
Np(p,6) = 3 (-DIE'V Pp(r,6") [ pe (A.4a)
G'sG etE’

where the partitioned m-rooted chromatic polynomial is

PpL,G) = 3 (-1)IE'I x0(C) 4p(cr) (A.4b)
G'sG

The other expression for Iy ,(p,G) in terms of unrooted functions is rather

complicated (see eq. (3.7a) of PF2),

The partitioned m-rooted rank function Wp(x,y,G), which extends the Whitney rank

function W(x,y,G) (see Essam 1971a) becomes, for y = Ax:

Wp(x, Ax, G) = Wp(G) = ¥ x!E'"1 xc(G") 4p¢G*) (A.5)
G'SC

Pp(7,G), Np(p,G) and Wp(x,y,G) are related to Fp(),G') through egs. (4.5), (4.6)
and (4.13) of PF2 respectively. Using these relations and egs. (3.5), (3.14) and

(3.21) we can define the SBCM's for these functions using the algorithm of

section 4:
A.1) SBCM for Pp()\,G).

SBCE:

Pp(2,6) = A2(Py (A, L)Pp(\,H) +NP; (N, L)Pp(A,Hinj)} (A.6a)

P(N,C) = M2{Py j(N,LYP(A,H) #\Pf (N, L)P(X, Hyi_})) (A.6b)
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Series equations:
Pp(X,G1UG2) = 31 Pp(2,61) P(1,C2) (A.7a)
Pp(},G1UCy) = A~ 1Ppi (2,G1) Ppe(},Gq) (A.7b)
Pp()\,C{UCy) = O (A.7c)

Parallel equations:

P(X,G1UG2)=A"2(P(X,G1)P(X,62)+(A-1)P; j(A,G1)P; j(X,G2))  (A.8)
P{§(X,61U6y) = A"2(P; j(1,G1)P(),Gp) +Pj(X,G2)P(X,Gy)
+(A-2)Py j(\, 6P j(X,62)) < (A9
A.2) Np(p,G)

SBCE:

Np{(p,G) = X'z{Ni,j(P.L)Np(P.H) +MNj 1 (p,L)Np(p,Hj_j)} (A.10a)

D(p,C) = M2(Nj j(p,L) D(p,H) + WNjj(p,L) D(p.Hi—j)}  (A.10b)

Series equations:

Np(p,G1UG2) = A\~INp(p,€1) D(p,G3) (A.11a)
Np(p.G1UG2) = X~1Np:i(p,G1) Npn(p,C3) (A.11b)

Np(p,G1UGy) = 0 (A.11¢)
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Parallel equations:

D(p,G1UG2)=A"2(D(p,61)D(p,G2)+(A-1)Ny §(p,G1)N1 §(p,C2)}  (A.12)

Nq j(p,C1UC2)=A"2{Ny j(p,C1)D(p,C2) + Nj{(p,C2)D(p,G1)

+(A-2)Ny j(p,G1)N; j(p.GC2)) (A.13)

A.3) Wp(G)
SBCE:

Wp(C) = Wy (L)Wp(H) + Wi j(L)Wp(Hi_)) (A.14a)

W(G) = W j(L)W(H) + Wi_](L)W(Hi-j) . (A.14b)
Series equations:

Wp(G1UGq) = Wp(G1) W(Gy) (A.15a)

Wp(G1UC2) = Wp: (G1) Wpn(Gy) (A.15b)

Wp(G1UGy) = 0 (A.15¢)
Parallel equations:

W(G1UGy) = W(GP)W(G2) +(A-1)Wy (G1)Wy j(C2) (A.16)

wij(GIUG2) - Wij(Cj)W(Cz) + Wij(Gz)W(Gl)

+ (k-2)W{j(Gl)WiJ(C2) {A.17)

Using the above formulae we can construct further SBCM's and BCM's along

similar lines to the algorithm of section 4.



CBPF-NF-011/87
-38-

FIGURE CAPTIONS

Figure 1 - Pictorial representations of two-reducible m-rooted graphs G = LUH,
where the intersection vertices i and j can be rooted or not. The roots 1,2,....m
are represented by small circles and unrooted vertices by full dots; each subgraph

is represented by a half-moon shape,

Figure 2 - Tllustration of eq. (3.1) in the case where 1 must be connected to 2,
and 3 must be connected to 4 on G' ie. P={{1,2},{3,4}}. The roots of type 1
and 2 are respectively represented by small circles and squares. A dashed line

between any pair of vertices indicates that there is a path between these vertices,

Figure 3 - Pictorial representation of eq. (3.17). &, is the value of the net
mod-)\ flow from L to H at i which is equal to the net mod-) flow from H to

L at j.

Figure 4 - Pictorial representations of two graphs G; and G, in series ((a), (b),
(c) and (d)) and in parallel (e). Roots of the same type are represented by the
same symbol (o or & or ¢ ) In case (e), G; and G, have no roots except

possibly i and j. Roots of the same type are connected by a dashed line.
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Figure 5 — A schematic representation of the calculation of t¢§ _3(1,G) for the
drawn graph G “decorated" with equal thermal transmissivities t through the SBCM
using the algorithm described in Section 4.4, The steps used from one graph to
the other are indicated in parenthesis, The effective thermal transmissivities
associated with their respective effective edges are also indicated. A squiggle
indicates the edge t to be deleted and contracted. The respective polynomials at
the top and bottom of a rectangle represent the numerator N and denominator D
of the equivalent transmissivity of the preceding graph. t,, tp, tyv 1 and tq are
defined in egs. (4.20). The double line (=>=) points to the subgraph replacement,
The calculation of t$9,(t,G), with G drawn in Fig.5a, is represented in Fig.5b

where Tl=t1 and Tzqq_

Figure 6 - The partial graphs G' of G (drawn at the top of Fig. 5a) with their
respective flow polynomials F(\,G') which contribute to the coefficient of t3 in

D(t,G) (eq. 4.23b). The dashed lines indicate missing edges.

Figure 7 — The partial graphs G' of G (drawn in Fig. 5a) with their respective
Fip5(\G') which contribute to the coefficient of t3 in Np,y(t,G) (eq. 4.232). The

dashed lines indicate missing edges.

Figure 8 - A schematical representation of the calculation of t%9 At.G) for the
same graph G given in Fig. 5§ through the BCM described in Section 4.6. The
caleulation of t$95(t,G§) and t895(1,GY ) require the calculation of t£8xt,Gg) (see
Fig.5b) where (r;=tp,7,7ty) and (Tl=t%,72'—'ts) respectively. The effective
transmissivities tp,t,,ty, and tg can be found in eqgs. (4.20a), (4.20b), (4.24a) and

(4.24b) respectively.
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