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Abstract

Supersymmetric extension of Floreanini and Jackiw formulation for chiral boson is
constructed adapting the Green-Schwarz procedure as applied to the string theory. Dirac

brackets which implement the two second class constraints are also constructed.
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1. Chiral bosons are relevant in the construction of many string theory models [1).
The bosonic formulation of Siegel (2] to describe them makes use of an auxiliary gauge field.
The gauge symmetry, however, becomes anomalous at the quantum level and the action
must be modified (3] which makes its coupling to gravity difficult. Another description of
the chiral boson was proposed by Floreanini and Jackiw (FJ) [4] which does not require any
auxiliary field and it seems amenable to the coupling with gravity [5] and supergravity [6).
We propose to discuss here a supersymmetric extension of the FJ formulation adapting to
our case the procedure of Green and Schwarz (GS) {7] as applied to the string theory. The

canonical Hamiltonian formulation is constructed following the Dirac’s method [8].

2. The GS supersymmetric formulation of the string theory is basically obtained by
replacing the quantity 8, X* of the bosonic string action by a supercoordinate Z* which

for the case N =11is

Z¥ = 8, X" —if1*8,8. (1)

Here, @ = 1,2 is an world-sheet index and g = 0,---,D — 1, where D is the spacetime
dimension. 6, is a real D-dimensional spinor. The quantity Z” is invariant under the

following global supersymmetry transformations

68, = €,
§X* = —i{ 6T e. (2)

We incorporate this procedure in the FJ theory by means of the following replace-

ment (*)

Byd — Z, = 8,4 +1i00,6. (3)

(*) Our convention is as follows: The Minkowski spacetime metric is 1,, = diag.(—1,1)

and the gamma matrices I'* satisfy {I'*,I'*} = 2¢9#¥,
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This corresponds to the GS supercoordinate for D = 1, where the two-dimensional world-
sheet is occupied by the two-dimensional spacetime of the chiral boson theory. Here, 8 is
just a real anticommuting field.

The supersymmetrié extension of FJ Lagrangian is

L=2,2,~2,2,
=¢¢' — ¢'¢' +1004' +i66' (¢ —24'). (4)

One can verify that Lagrangian (4) is actually invariant under the following global trans-

formations

60 = ¢ |
6¢ =ibe. (5)
It might be opportune to mention that we have not included a Wess-Zumino term [1]

into the Lagrangian (4) because it would not be invariant under transformations (5).
The Euler-Lagrange equations of motion obtained from the Lagrangian (4) are

" - —i0f +i60" =0 (6a)
8(¢" — ') +6'(2¢' — ) — 64’ = 0. (6b)

Combining these two equations and using the well-known properties of the anticommuting

variables, we get

¢ (¢'—¢)— (¢ -6)¢' =0. (7

We note that the usual chiral condition ¢ = ¢' together with 8 = @ are consistent with

expression (7).
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3. From the Lagrangian (4), we find that the canonical momenta conjugate to ¢ and

@ are

=¢' +i60 (8a)

=—t 096' ’ (85)

where we are using left derivative for the fermionic field. The relations above are primary

constraints [8]. Let us denote them by

d=p—¢' —idd (9a)
x=7%+i8¢ . (9%)

The Poisson brackets of these constraints are

{8(2,0), 80,9} = -2 2 6(z — y)
{x(z,t), x(y; 1)} = -2i ¢'() 6(z — v
{x(2,0,8(,0)} = ~2i6(31) 5 8(z ~v). (10)
As one observes, constraints ® and x are second class [8]. Hence, since all primary con-
straints are second class we can affirm that there are no secondary constraints.
We now calculate the Dirac brackets. Let us do this iteratively. First we use the

constraint ®. We need the inverse of

C(z,y) = {¥(2), (v)}

= -2 a%' 8z —y). (11)
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From now on we drop the explicity use of the time parameter t. The inverse C~?(z,y) is

CHew) =~z - ), (12)

where n{x —y) is the step function. Using the definition of the Dirac brackets [8], we obtain
the preliminar star-brackets

{$).50)}" = 38z ~ 9)

{4(e),60))" = —57(z ~ v)

{p(z),p()} = % %5@ - )

{6(z),7(y)} = —6(z —y)

{6(z),8(y)}" =0

{r(@), 7)) = 300 6z — ) +202) 0’ (g) (= — y)
{#(z),0)}" =0

1

{$(z)7(v)}" = 568z —9) - i O (W) n(= - y)
{p(=).6(0)}" =0 |
{ple), 7)) = 50 6z —v) - £ 0(z) 2o 6z — ). (13)

Now we pass to use the constraint y. It is necessary to know the inverse of

C(z,y) = {x(=),x)}"

=2(08' - i¢')b(z — y) + 26/ () 0'(y) n(z — y) (14)
This is given by
a0 = g (i+ 5) e =) + g Wz =) (15)

The attainment of the final Dirac brackets of this theory is just a matter of a (tedious)
algebraic calculation. The result is
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{82000} p =5 (1- :—-) 8z - )

A ¢ 9 z)0'(z)6 d
(-1 A ) _ B

()P0} p =3 o Bz — 1)

(60), 7@} p = - o =)+ D gty )

w0 @)
{a(z),o(y)}f— 2 (i+ 5) 8=~ 2P 1Y)
{r(=h )} =3 ¢ 6(z ~9)+(1+ 3z - 9) ).

(#2000} p = = 557 6z~ ) + 5 ( + 250 g e -

{6 )} p = - ( + 22D 0y n(e - v)
{p(z)’ e(y)}D == 2¢; 6(3 - y)
(o) )} p == 202) 2 8z - ). (16)

In order to check these calculations, we may implement the constraints ® and y in

the reverse order. In this case the inverse of

is

D(z,y) ={x(=):x(v)}

=-2i¢'(z)6(z —y) 7 |

D! ¢, 6(:: v) (18)

and the preliminar brackets are
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{¢(2), o)} = 8(z — )

' {ﬂx)sﬂy)}‘ =0 ‘
{p(2),p(1)}" =0
{821, 5(0))" = —5 6(z = v)
{6(z),6(0)}" = -;és(z ~p)

{x()7())" = 5 ' 8(z —v)
{#(z),0(9)} =0
{8(2),x()}" =0

(6(=),p0))" = —%}2) 36(z —y)

()W)} = 5 06) 8y 6(z — v)- (19)

Corresponding now to

ﬁ(xay) = {‘5(3'),‘:'(!{)}*

(1 K@ WG , o
= 2(1 @) oW )""5( v) (20)

we find

st oy L[y 0EFE) | HPG) BRI,
D™=y = 2(” @ TTew T E@eWw )"( v) (@)

which leads to the same final Dirac brackets as those given by (16).
The consistency of this procedure is easily verified by calculating the equations of

motion. These are

¢?= {é!H(t)}D =4
0= {6,H(t)}, =6 (22)
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Here we use the fact that inside the Dirac bracket we have effectively H = fdz (p¢'—=8') =

J dz x* on treating the constraints as strong relations.

5.Conclusion

We have adapted the GS supersymmetry of strings to the FJ theory of chiral-bosons.
It may be opportune to mention that the use of this kind of supersymmetry in chiral-
bosons leads to a completely different result when the usual supersymmetry is considered,
which was already studied by Bellucci, Brooks and Sonnenschein in a previous paper [9).
We have also constructed the canonical Hamiltonian formulation of the extended theory
by following the Dirac procedure.

Another interesting aspect which remains to be analized js concerned to the influence
of the GS supersymmetry in the quantum algebra of the Siegel theory [2). This point is
more subtle because the elimination of the second class constraint, related to the fermionic
variable, leads to some problems which we do not know how to solve yet. Possible results
shall be reported elsewhere.
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