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ABSTRACT

We analyze the Christ-Lee model in the framework of the sym-
plectic projector method. The correspondent Schr8dinger quantiza-
tion procedure is also applied.
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As is well knoim, one of the possibilities in treating con-
strained systems, as pointed out by Fradkin and Vilkoviskyi[lj,ds
to reduce the phase-space in such a way that we work_ only with
those variables which are gagge.indepehdénts ("physical variables").
There are, however, great difficulties in finding a procedure which
display those variables in a systematical way [2], which limits

drastically their applicabilities. -

We think that there is a trap for this problem in .the frame-
work of the simplectic projector-dévélopped bf Pitanga and Ama-
ral [3], which appears as an alternative technique to deal with
classical Lagrangian and Hamiltonian constrained systems. There,
the simplectic projector, whose matrix elements turns to be the
fundamentals Dirac.Brackets, when applied to the phasé-space var-
iables, produce, automatically, those "physical variables" which
play a central role in Fradkin's development. _

We want to exemplify here_those viewpoints analyzing a non-
relativistic, gauge invariant model, proposed bycmrrﬂ:andlfé [41,

with a Lagrangian
1 s 2 2 PR A - 2,52 2,2
L =3 (B2 +%,")-(x X, %)) X3 + 5 -3§(x1+x2)-V(x1+x2) B #h)

That model was used by Costa and Girottil[SI as a check of the
so-called Dirac Brécket'Quantization.Procedufe (DBQP) where they
had succeeded in obtain the'pﬁysical variables, althought in a in-
tuitive way.

All we need in the projectot-technique'is to have a local vec
tor space generated by the (second class) constraints of the: theory.

Those second class constraints are: (see eq. (2.a), {(2.b)(6.a)
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and (6.b) of ref. [51)
¢, = Py=0 (2.a)
¢2 = p,-ep,; (Z;b)
03 = Xy - eX, (2.0
¢4 = X, = 0 (2.4)
where e = Tan% , and b,c are nonzero constants. Therefore, the

simplectic local metric, defined by gij: {¢i,¢j} turns to be:

0 0 e =17
g=|0 o -1 0 (3)
0 (l+e?) 0 0 |

1 0 0 0—

The projector on the manifold provided by the constraints has com

ponents in free coordinates
MY _ WY P & od a0 43 LOH
P = g gijts §Q¢- 3a¢ >l (4)

Hv

{(where ¢ is the global simplectic metric and gij is the inverse

of ng) which are, in this case, given by

™ 0 0 0 (e’ een™l 0
0 0 0 e(l-@-ez.)_l e? (Liet) ™t -0

P = 0 0 0 0 0 o[ (51
et eyt 0 0 0 0
el ez(en)l o 0 0 ]!
0 0 0 0 0 0
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When we look for the projected coordinates we find:

Xy = (léezj'i x44- e(l+e?)”! X5 I(G.a)
x5 = ex? (6.b)
X3 = 0 (6.c)
x* = =(l+e?) Ly —e(l+e?) 1y (6.4)
4 1 2
X3 = ex} (6.e)
Xg = 0 (6.£)
where the correspondence with the canonical coordinates is:
(X 1%y %300, vP5 1Py X 1 X g1 X7 Xy 1 X5 1 Xg) (N

The meaning of the set (6) is the following: the manifold allowed:
by .the constraints is a unidimensional one, where the motion  is
driven by a Hamiltonian whose form is derived from tHe canonical

one

=
1l
o
g
[\ ~]
+
(N}
]
[N ]
+.
L]
»
N
+.
]
[ L]
(]
(X T

X2 +3 %%+ Vix2+x3) (8)

By taking their projection:

H* = %_xz+%xg* + V(X;*:"' X;*) ’ (9)
That is, B* = 3 (Lee?)x} +V((1+e?)x}?) - (10)
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To 'clarify, redefine
x, = (l+e?)1/? x* © (1l.a)
‘ . .
by = (Lee?yt/Zys (11.b)
L _
In this way, we can write
1l 2 2 .
H = 3 p?+ V(x?) 12)

Then, we have the canonical equations of motion:

bl
1}

{x,H} =

|
g

(13.a)

e [
[}

(p,n} = - ¥ (13.b)
These results are in agreement with-Costa-Girotii {51, obtained
vig DBQP. The canonical quantization procedure follows in the u-
sual way.

As a check, we look for the Schrddinger quantization procedure
for constrained systems proposediby Pitanga and Mundim [6]; there

the Hamiltonian operator is given by
-~ _ p\, - - . .
H = BI}P 3p+? (14)
With our configuration space projector in the following form

- (1-e2) "1 e(l+e2) !

P=le(lee?)”!  eZ(i4e?)t (15)

0 0
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and recalling that 3,=e?d , we obtain

Redefine now

The Hamiltonian

[+5)
|

- (1+e213§§-vi(1+e2)Xi)

(14&2)1/2 X

"
H

1

_ 2,1/2
x (l+e”) 31

takes the form:

M= 22+ VI(x?) ,

‘giving the same physics obtained in the canonical form.
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