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ABSTRACT

We study the bosonization of the massive Thirring model in the

framework of the path integrals.
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Analysis of guantum field models in two space-time dimensions
have proved to be uéeful theoretical laboratory to understand phe
nomena like dynamical mass generation, confinement, - topological
excitations, all features expected to be present in the more re-
alistics four dimensional quantum theories,

Recently a powerful non-perturbative technique has been used to
analyse several two dimensional non massive fermion models in the
(euclidean) path integral approach. This technique is based on
a suitable chiral change of variables.l’2’%7* |

It is the purpose of this brief report to show how to deal with
the case of massive fermion models in the framework of the above
technique by studying the massive;abelian Thirring model, ®

Let us start our analysis by considering the euclidean lagran-

gian of the model
2
B0 (x) = (=1Fy, 3 ¥ +nPy + L (hy 9) () (1)

where w=(w1,w2) denotes a two dimensional massive fermion field
of (bare) mass m and g the coupling constant.
The hermitean y-matrices we are using satisfy the (euclidean)

relations

{vevyd = 2Y,y P YyYs = iem,‘r\, TS RANN

Bh, = =€, =1 (2)

The lagrangian (l) is invariant under the global abelian group

y>e'® (a€R) with the noetherian conserved current
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autwv“w)tx) =0

In order to construct an equivalent bosonic theory for the model

(1), we consider the quantum partition functional

a?z B, (4,9 (x)
| (3)

Z = ID[w(X)]DIW(X)]e_I

It will be useful for our purposes to write the interaction la
grangian in (3) in a form closely parallel to the usual fermion-

-vector coupling in gauge theories by making use of the following

identity:

_%i]dzx(ih“w)"‘(-:é) _Idzx%Az(x)
e = ID[AUIX)]E v

+Jd2xig<my“w>(x>au<x> (4)
e

where A“(x) is an auxiliary abelian vector field.

After the use of (4), Z becomes
-% Idzx AZ(x)
Z = [D[Au(x)lnlw(x)lntw(x)le H

e;fdzx(_iwyu(au__gnu>w-+mmw><x> (5)

Now, we proceed as in the massless case by making the change of

variables?®

igTBB(x)d-in(x)
Pi(x) = e x (x) {(6)
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igygB(x) - in(x)

P(x) = Xx(x).e X (x) (7)

A (x) (v€,,0, B —%_aun) (x) - (8)

At this point, it becomes important to remafk that the fermionic
measure D[Y(x)IDIT(x)] in (5) is defined in terms of the normal-
ized eigenvectors of the hermitean Dirac operator -iyu(au-:gAu),
since we are dealing with the massive Thirring model as a mass per
turbation model around the massless case closely to the .idea of
the conventional bosonization scheme implemented by Coleman."’®

As has been shown by Fujikawa' the transformations (6) and (7)
are not free of cost due to the non-invariance of the functional
fermionic measure under chiral change ¢of variables. The resulting
jacobian is given by?

-{Jazx_-lz-_ (1+ &) (5,8)7 +
DIY(x)ID[Y(x)] = e

l+g?
y T

_ (9)
“Zw_g,!""(aumz} Dix(x}1DIX(x)]

Concerning the transformation (8), we have the result?
DA, (X)] = Det[Z(3%~32)1 DIB(x)1DInx)] (10)

Substituing eq. (9} and eq.(10) in eq.(5), we obtain the expression

z = _[n [8(x)1DIn (x) IDet(1 (2% - 32)]
g 1 2

1 2 . 1 (1+ T
e-{jdgx[r(1+§~ﬂ-)(3p3)z -3 = omY
- - ZigYSB
. _ _{Id?x (=X 1Tua X+ mxe x)(x)1})
(fntx(xnn[x(xne H (11)
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Now we note that the (unphysical) n(x) field is decoupled inthe
effective partition functional given by the equation (11); since
it is related to the spurios longitudinal part of theconserved U(1l)
current of the model (note that at the classical level the field
Au(x) coincides with (ﬁyuw)(x)). As a consequence solely the trans

versal part of Au(x) effectively contribute to the partition func

tional (l1)}. Thus, we get the effective result

-{ja?x Li+83 82}
% = fnis(x)le A

o = - 2igygB
-{Id x(-X iy, 3 x + mXe X))}

'([D[x(x)]DﬁE(X)]e (12)

Now we note that, opposite to the massless case, we have not de
coupled coampletely the massive fermions from the field Au(x),shxm

it remains in eq.(12) the mass coupling term
| 2igy B ey . 1=y Cpicn
m(x e ° x-.)(x) - m(x (—2—9) x 2188 i(—-;—‘f‘-)x e 2‘83) (x) (13)

We, then, face the problem to evaluate the fermionic functional

integral

—{Jd’x(—i(ivuau)x)cx)
I[B(x)] =-JD[x(x)]D[i(x)le

+ m(o,e? 88 | o e"2i8B) ()3 (14)

where we have introduced the objects
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- 5 -

9, (x) ( ( ) )(x) (15)

In order to evaluate (l4), we make a serie expansion of the term

2igB . 5 e =2i8B) (x)} in powers of the (bare) fermion

exp{-m[dzx(o'e
mass m.
Explicitly:

-Id.zx'(i (-iy, 2 X ()

IB()] = | (w7 {fdle---dthlthx(x)]-D[x'(x)!e

(o e2i88 + U-—e—ZigB"Xl) “en (U+62igB+.U_e-2i-gB) (XN) (16)

Now it is a well-known result that the only nonzero terms in (16)

are those with equal number of o!s and o's, 518 4.e.:

o fe@eiv 0 @ ;
ID[x(x)lb[x(x)]e &y 9, (x )0 0 (y)

. (x,-y. )2 (y,~y.)?
_ ol 2k 1>)3 i -] i *j3
= (3%} — Y (17}
(1,j) "7i ;]

with the massless fermion propagator given by

(x, -y ) '
1 H U
(iYua )~ (X.y) = g Yy o) ? (18)

By following Coleman,’® we introduce a massless scalar field ¢(x)
with the (infrared regularized) Green function given by Mm:'%ﬁ £y 16‘-;-
(¢ is a infrared cut-off with mass dimension) and re-write eq.(1l7)
in the form
a%x 703,92 (x)

H

(_2_]_.-[?) 2k e—Zkﬁ(O) (ID[Q (x) ]e"l‘

k |
LR <i§1¢(xi)-¢(yi)) (19)
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By noting that the averages

k
1 . :
-la%x (3, ¢)2(x) VBT.i( ) ¢(x;) ~ §.¢(y-))
[D[¢(xJ]e [ LR e i=] t i=] 1
are zero for k#f due to the infrared divergencies of the massless
scalar field ¢(x) ° we can write I[B(x)] (see eq.(14)) in the form

~(fa*x 33,02 )}
I[B(x)] = IDM(x)]e H

-Idzx{ (m ‘-‘_MO))‘EIE cos(2gB + VBT ¢)(x)}
e : (20)

where we see that the (bare) mass parameter gets a multiplicative
(ultraviolet) renormalization m, =m e~2(0) s

Finally, substituing eq.(20) in eq.(12), we get the effective
bosonic action for the fermionic massive Thirring model (see eq.(3):

2 .
-{faz Li(1e 223082 + (3.0)21(x))}
Z = JD[B(x)]D[d:(x)I e gl B0 G I

m .
.-Z%szx cos(2gB + /81 o) (x) (21}
e

In order to analyse the physical spectrum associated to the ef-

fective bosonic action eq. (21) we introduce the new fields

2g B (x)

(29 B+ VBT ¢) (x)
{22)

¢ (x)

(c B +c ¢) (x)

where the arbitrary constants C,r €1 satisfy the relation
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-7 -
eyc, = - /8w
2g(1+g?)
{23)
°1 4 /B
c 29

(o)

In terms of these new fields, the effective lagrangean in eq.(21)
takes, then, the more transparent form:
8w
- - w2 (Cz“+1—7) -
iz(ﬂ.dﬂ (x) = (1+%—r—)- L E(BUB)Z(X)+

(cl-co.f“

—m_—mu»fg )c ) (3 @)Z(x)
(c1
9

m
+ =2 cos(2g B(x)) (24)

an

There is thus, in the spectrum of the model a massless scalar
field ${x) and a sine~Gordon field B(x). We remark that this re-
sult agrees with these obtained in a conventional operator.: approach.’

It is instructive to point out that the massless scalar. field
$(x) is a remnant of.“almost long-range order" of the Kosterlitz-
—-Thouless type which occurs in the infrared region of the massless
Thirring model (mR=0).7

Finally, we note that similar analysis can be straightforward im
plemented for the non-abelian version of the model,?® or -for the
massive (abelian and non-abelian) fermion gauge theories.?’?®
As we have shown, chiral changes in path integrals even for mas

sive fermion models provide a quick, mathematically and conceptu-

ally simple way to analyse two dimensional fermion models.
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