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Abstract. Witl}in a simple real space renormalization group framework, we calculate the
thermal evolution of the spontaneous magnetisation associated with the (extended) discrete
N—vector ferromagnet. The corresponding critical exponents § are calculated as well.

Key-words: Critical phenomena; N-vector model niagnetisation;
Renormalisation Group.
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The (extended) discrete N-vector model (or cubic model) unifies in a single framework a
large amount of theoretically and experimentally important statistical models (see [1-0)

and references therein). Its Hamiltonian is given hy

pr=- Y [NEGd)+ N1 LEEY] | (1)
<i,j>

where f = llkBT and the spin §i at any given site is a Ncomponent unitary vector which
can point only along the 2N positive or negative orthogonal coordinate directions, i.e., gi =
(#1, 0,0, ..., 0) or (0, 41, 0, ..., 0) or ... or (0, O, O, ..., #1). This interaction is a discrete
version of the cl‘assica.l N-vector model. Let us list a few important particular cases:

(1) N— 0 and arbitrary L yields [5,7] the self-avoiding walk (SAW) problem;

(i) N=1 and arbitrary L yields the spin 1/2 Ising model;

(#15) N = 2 reproduces the Z4) model (see [8] and references therein);

(iv) R= NL/K = 1 yields the 2N-state Potts model with dimensionless coupling constant
2NK;

(v) K = 0 yields the Mstate Potts model with dimensionless conpling constant N2 [;

(v) Finite K and NL/|K| — * yields the spin 1/2 Ising wodel for arbitrary N.

The criticality (phase diagram and thermal critical exponents) associated with
Hamillonian (1) is easily tractable within a correlation [unclion-preserving real space
renormalization gronp (RG) becanse no coupling constant proliferation oceurs for arhitrary
(real) value of N [5,0]. To discuss the square lattice we shall [ollow along the lines of [5)
and use the self-dual Wheatstone-hridge cluster (see Fig. 1); the corresponding recursive

RG equalions are given by

Kt = 5loin (Gi/Gy) (2
‘=L (e 6/c | - 3
L N (Gi G/G)) (3

where
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G = eSML[esNK 4 INK 2e——NK] + 2 (N-1) [QGQML [esz + e—2NK] +
L [NK 4 VK] LoN—4] (4)

(;ﬁgefﬂ\ﬂL[eI\{K+ e—NK] +2(M1) [4 2NL eML[eNK+ e—NK]

+oN-14] (5)

2 g —N -
Cs=2 {esh L[eSAK+ 3e ]\K] + e2N2L[e2NK+ 24 e 2NK]+

(N=2) [5eP5[eVK 4 VK] 4 2N-6]} (6)
We are here interested in the calculation of the spontaneous magnetisation. To
perform its calculationy we shall follow along the lines of [9], and add, to egs. (2) and (3),

the following one
W = WKL) U

where 1 is proportional to the spontaneons magnetisation and h(K, 1) is obtained throngh
Table 1.

Typical phase diagrams are indicated in Fig. 2 [5], and typical results for the
spontaneous wagnelisation ate indicated in Figs. 3-0. In particular Fig. 6 shows, for the

nontrivial cubic fixed point, the critical exponent 8 calenlated from

* *

where (K*,L*) refer to the cubic fixed point, and A denotes the largest eigenvalue of the
2x2 Jacobian matrix associated with eqs. (2) and (3). The asterisk indicates the Ising value
for B oblained by Caride and Tsalis [9], which is a perfect agreement between this result
and ours (N=1). 1t is worthy to mention that this is ndlthe first time that non-monotonous
Lehaviour like thal of Fig. 6 is observed in hierarchical lattices (see, for instance, rels. [0)
and [10]). To the best of our knowledge, this is the first time that the Mevolution of #is
calculated. The present results could be numerically improved by considering larger sell-

dual Wheatstone-bridge-like graphs.
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Figure‘Captions

Figure 1. The self—dual Wheatstone—bridge cluster used to obtain the RG recursive

equations. e and o denote, respectively, internal and terminal (root) sites.
: . . .G
Figure 2. N=2 typical phase diagrams (reproducing that o? ref. 5).

Figure 3. Magnetisation versus reduced temperature for N = 2, for several values of R (=
NL/K). Curve (a) R=0,(0) R=0.5,{c) R=1,(d) R=2,(¢) R = 5 (long dash) and R =
10 (short dash).

Figure 4. Magnetisation versus reduced temperature for R= NLJK = 2, for several values

of N.Curve (a) N=0.5, (D) N=1,(c) N=2,(d) N=3,(e) N=5, () N= 10.

Figure 5. Magnetisation versus reduced temperatute for several values of N and the
corresponding value of A at the cubic fixed point. Curve (8) N =1 (long dash) and N= 2
(short dash), ()) N=3, (¢) N=4,(d) N= 10.

Figure 6. Magnetic critical exponent B versus N at the cubic fixed point. The asterisk

indicates the Ising value of 8 obtained in ref. 9, which corresponds N= 1.
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Table 1. WKL) = {[1-e5(”"+m‘).10 + 1.e(NKHSVD) o (QN_Q).ea(NmNﬂr,)_s +
0o NKSSMLY 4 o g JENKSNL) g gy o) (NERINL 5

A2N-2) - NEHML) 7 o oon 9).2¥ L3 4 ] / [1-e5(”“+”“) + 1.eNEHSNL) |

(2N-2)- es(Nm-N‘L) + Q.e(—NK+5N“L) + 2.0(—1\'}(4-5}\!“!.) + 2(2N-2)-e(‘”"+3”2” +

2(‘2N—2)°e2(NK+N2L) + Q(QMQ).GWL + ]} /{5[1_enxf+~°r 2+ l.e—N}\"+N’L’.0

+ (2N—2)-l-1] / [1-e”"'+"c""+ 1. VK +NL (2»2)-1]}. The term inside the
first pair of curly brackets comes from the first part of thi§ table, while the term inside the
second pair of curly brackets comes from the second part of this table. The factor 5 in this
last term comes from the number of bonds in the cluster. In the configurations below,

horizontal arrows represent spins in any of the N-1 axes perpendicular to the one where the

spin at the top site 1s.

Configuration Multiplicity Weight m
1 SINK+NL) 10 ‘

1 e(NmsN" A 6

@ N2 ea(NxMFL) 8

K:>| 9 [ NKISNL) 4
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11~
5 e(;N}f+ SN2I)
2A2N-2) (NE+3NL)
é' A2N-2) K1
Configuration Multiplicity Weight
1 NK' +MNL’
1 —NK’ +NL

2N=2
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