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. Abgtract

The quantization of a system 'subject to a.
friction force quadratic in the velocity and position
dependent is carried out in the Feynman path integral )
framework. The resulting Hamiltonian coincides with
the one obtained by using the Weyl-ordering canonical

prescription.

Key-words: Friction; Path integral gquantization; Dis~
sipaty systems; Wéil—ordering.
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INTRODUCTION

The problem posed by the quantization of a particle
subject to a velocity-dependent force has recently received
particular attention o2 . Its interest comes from the fact
that for some special cases of this kind of nonconservative
systems an appropriate Lagrangian can be defined? The sim-
plest example is that of a particle subject to a friction
force which is gquadratic in the velocity®. This class of
interactions, at the microscopic level, could be of some
relevance in non-relagivistic nuclear physics systems where
dissipatioh-.' is dezcribed by a -velocity#—debendence more. general . than
e linear ene. From a more theoretical point of view, the in-
terest on these systems is related to the‘ambiggities ap-
pearing in the ordering of the operators x and p in the Ha-
miltonian, when the canonical 'qdmﬁjzatﬂxl procedure is car
ried out. This comes from the fact that the classical Ha-
miltonian for a particle in’'a viscous field involves an x-de
pendent kinetic. term. It is precisely here that the so-
called Weyl-ordering method applies? This procedure was in
troduced in order to cope with the - arbitrariness in the
Hamiltonian operator definition gi&ing the correct sym-
metrization between operators X and p.

On the other hand, inside the path integral quanti
zation frameworks, the Weyl-ordering result comes out natu
rally, when the Hamiltohian operator is extracted from the
propagator definition. Nevertheless;' this result is only
guaranteed when the path integral is correctly defined in
terms of the Hamiltonian, through pg4 - H, insgead of being in
terms of the Lagrangian. This clearly implies a detailed
and careful treatment of the p-functional integration,
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In this paper we present an exhaustive analysis of
the path-integral quantization of a system subject to a
force quadratic in the velocity and x-dependent. In this
way we end with the correct Weyl-ordered Hamiltonian opera
tor for the system.

In section II we summarize the classical and gquan-
tum canonical treatment of the large class of vz- depen-
dent frictieom forces considered. 1In sectionIII;the path
integral apprcach is presented in some detail together with
the results obtained. SectionI¥ is devoted to our conclu-
sions and final remarks. Here we include our .critigued® a
recent treatmentl.of the present problem where the above
mentioned p-integration was not properly considered.
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3 CLASSICAL AND QUANTUM CANONICAL TREATMENT

The classical squation of motion for a particle (m=1)
in a field of force quadratic in the velocity reads:

¥ ==L 4y )k - au) (2.1)

Where Y (x) drives the friction (; > 0) of anti-
friction (x <0)fanxaamd\ﬂx) is the potencial energy. As it
15 well.uxwﬂzeq;(Z 1) can not be derived directly from a La-
grangian. Nevertheless if we multiply eq (2.1) by the inte-
grating factor

f(x) = exp {xds Y (s) - (2.2)
we obtain
‘% f(x) = -1 £'(x)x - f(x)av ,,
2 ds
(2.3)

which is equivalent to eg.(2.1). and can now be derived from
the feollowing Lagrangian.

L =_1_ x : fix) - fx ds f(s) av, (2.4) ¢
2 ° ds

In order to proceed to the Hamiltonian formalism,
we) first calculate the canonical momentum

p = x f£f(x) (2.5)

and then write

-IL— £ (x) + W{x)

with)M (x) = fx ds f£(s) gv (2.6)
s
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Let us note that in this case the Hamiltonian
is not the total energy of the system, as it -should be. .ex-
pected because of the presence of non-conservative forces.

Once the Hamiltonian has been obtained we can

quantize the system by imposing the canonical commutation
relation

[x, p]l = i {B=1) (2.7 )

If no further conditions are imposed, the quantum
Hamiltonian will not be uniquely defined because different
ways of arranging the ordering of p's and q's lead to the
same classical limit.

Among the different proposals to, cope with this
difficulty, the Weyl-ordering prescription provides us a
systematic way to solve the ambiquity. In the present case
it gives L z.?% 2 . ,

H, = g—(p £ (x) + 2pf (x)p + £, (%) p )+ Wix)

(2.8)
Nete that H, is self-adjoint and implies the
validity of Ehrenfest's theorems. On the other hand, . the
use of the Weyl—ordering avoids che trial and error approach
in building the correct Hamiltonian that satisfies -  these

theorems.
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III PATH INTEGRAL APPROACH

In this section we consider the path integral quan
tization method for a system driven by a v?- dependent force.
The quantum Hamiltonian operator is derived from the corres-
ponding Feynman propagator and it is shown that it coincides
with the previously introduced Weyl-ordered one, given in
eg. (2.8).

Let us start by considering the evolution of the
system, described by the wave function ¥, from (x', t'} up
to (x, t). This evolution can be written as

Y o(x, t) = /. ax' K Gi.t; x',£") ¥ (x', t')  (3.1)

where the Feynman propagator K is given by the following
phase space path integral

K {x, t; x', t'). = [ Dx:ER; exp [is(x, t; x't']
2" (3.2)

and the action S is

S (x, €t; %', t')

/Par pdx _w) (3.3)
£’ dr

including the classical Hamiltonian (2.6)

It should be noticed that ocur definition of the pro-
pagator K explicitely includes the path integration over the
momentum p. In the present case this integration is not triv
ial because the kinetic term in the classical Hamiltonian
(eq. (2.6)) depends on the coordinate x.

In order to carry out the path integral one starts
by doing a suitable discretization.
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We consider the standard procedure6 where ‘in each interval
[xi-l' xg ] one takes the value of the functions involved
in the mean point of the interval (x  + xiv2 .. Notice

the difference with the choice in Réf.l. When the p-inte-
7
gration is so performed , one ends with

% n _

K(x,t; x',t') = (2mie) / ;7 dxd §(xy = x'") 8(x - x).
[ /2

(2r.1¢)

- . 2 ' _
1% e (e o Qe e B )
« eXpP s
i= 2 £ 2 2
n Xy + xi i* 5@
. " [ £¢ =1 .

i=2 2 (3.4)

The lhst factor in this expression comes precisely from
the above mentioned p-integration.

In order to evaluate the gquantum Hamiltonian we
consider the propagation of the system in a very small
time interval ¢ and we compare the result with the
Schrddinger equation. To this end, let us come back to
eg. (3.1) under the mentioned conditions, to have

p (X, +e) =:an Kix,t +e; x - n,t)¥ (x - n,t) (3.5)

— 0



CBPF-NF-009/87

where, due to the smallness of € , the propagator K can be
approximated by

=y
K(x,t + e; X - n,t) & (2me)exp 1[—ﬂ—f(x- ) wWix- 3oy
2 2 2.
1/,
o[£ (x=- ——)1“ (3.6)

when-£.is very small, the propagator K gets contributions

only for U in a region of the order (¢ YG Then the inte-
grand in eq. (3.5) can be expanded around =0 in order ..to
obtain the contributions up to the order € . In so doing
one gets |

Pix,t +€ ) = y(x, t)u{——f()axz f"‘ex)f(x)——

X
2 g - L7 e ) = HE) L) @7
8
B ’ .
As usual , we have taken the simultaneous limit € =+ 0

both in the time interval for the wave functions and.in the
computation of the propagator K.

Comparing now the expression (3.7) with the
Schrédlnger equation and using the x - representation,
p ==i —3— for the momentum operator we finally obtain
X

- 1 .72 -3 - & - -1 -2 )
He—=[p£f(x)+2P £1x)p+£f (x)p]+ WX, . (3.8)
8

which is identical to the Weyl-ordered Hamiltonian given
in eq. (2.8).
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IV CONCLUSION

We have carried out the gquantization of a system
subject to a viscous force quadratic in the velocity. We
were able to consider a large class of x—dependent'ir;ction
forces as long as y (x) does not induce strong singqularities.

The ambiguitigs relaEed to the undefined ordering
of the non-commutating x. and p operatorswere avoided by
using the Weyl-ordering procedure in the canonical quanti-
zation approach. Afterwards we completed the Feynman path
integral gquantization of the system. In so doing we have
employed the usual prescription for the discretization of
the functional integral, obtaining exactly the same Weyl-
ordered quantum Hamiltonian as before.

It should be notice that the recent resuit- of
Ref.l, where a parameter R (between 0 and 1) was intro -
duced for fixing the point in the interval [xj_,, xi]
where the functions are computed after discretization, 1is
fortuitous. 1In fact, as they started fram the path -integral de-
fined in the configuration space and not in the .phase-space, they mis-
sed the already.mentioned factor that appears in the Feynman propagator
when the p-functional integration is performed. For this reasan ' they
were led to the unexpected value §=1/3. Mazeover, -they could find the
&deonizedIﬁm&lﬂmuan:xxmuse'ﬂkw”Umwbaiihe qxxualcxme
fix) = exp ( vy x), with y constant.

Two of us (L.N.E. and C.A.G.C.) are very happy to
thank the Centro Brasileiro de Pesquisas Fisicas for the.
warm hospitality extended to them..
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