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ABSTRACT

Taking inte account vacuum fluctuations through a guadratic
curvature term in the grawvitational action, a minisuperspace model
ls constructed where the stability of Minkowski _ spacetime is
analized. We find it to be unstable independently of the quad-~

ratic term_ coupling constant.
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1 INTRODUCTION

The stability of Minkowski solution in classical general
relativity is a well-known result. On the other hand, in the
semiclassical approach where quantum fields are considered
on a classical background, the same problem has been studied
and Minkowski spacetime was shown to be unstable under dif-
ferent conditions [1] due to renormalization effects. More
recently [ 2], it has been verified that flat spacetime with
quantum fields is always unstable under a certain type of per
turbations. One should expect the same result when a full
gquantum theory of gravity is used. 1In this paper we will ana
lize the problem in the context of the canonical - quantum
theory of gravity [ 3].

We will consider a R + € R? model which may be viewed as
an effective theory that takes into account the first short-
distance corrections to classical relativity. These correc
tions must be necessarily included when quantum fields are pre-
sent in order to renormalize the theory, .since divergences
proportional to R? do appear [4]. They may also come from
the low energy limit of a more fundamental theory (as for ins-
tance superstrings) [5]. It is then of interest to consider
such type of modifications of general relativity. The R? grav
ity has been analized in the context of quantum cosmoclogy by
several authors [ 6-8]. 1In particular, the wave function of
the universe has been computed within different approximations
using Hartle-Hawking [[6 ] and vilenkin boundary conditions. [[7,8].

Our interest here is to study the evolution of a wave packet
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initially peaked around Minkowski spacetime.

The paper is organized as follows. In Section II we write
the classical action of R? gravity for flat Robertson Walker
spacetimes. We derive the Wheeler-DeWitt equation which has
only two degrees of freedom: the scale factor and the scalar
curvature (we are thus reducing superspace to a two dimensidnal
minisuperspace). In Section III we find a solution of the
Wheeler-DeWitt equation that shows that Minkowski spacetime is
unstable for all values of the constant €. Some final remarks

are included in Section IV.

I THE MODEL
We will study a model with gravitational action given by
-1 O _ 2

S = 16“GJ'd. xyY-g{(R €R°) (2.1)
where G is the gravitational constant, R is the scalar ._curva-
ture and g is the determinant of the spacetime metric. The
signature is {-+++) and we work with natural units in which
h=c=1.

We will consider a flat Robertson Walker spacetime with

metric
ds? = -at? «a%(t) {ax? + dy? +.dz%} (2.2)

where a(t) is the scale factor. The Ricci scalar is given by
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...3... .
R=6(f+28%) , H=2 (2.3)
so the action (2.1) bhecomes a functional of a{t), a(t}) .. and

g(t). In order to guantize cancnically this theory with higher
derivatives, one must consider a(t) and R(t) as independent coordi
nates | 6-9]. The Wheeler-DeWitt equation is obtained as usual
by replacing the momenta by derivatives with respect to the
conjugate variables in the classical Hamiltonian constraint,
which is the generalization of the tt-Einstein equation.

It is useful to write the action (2.1) in terms of the in-
1/2

dependent variables a(t) and ¢(t)= £n(l +2£ R) , which is
then given by
= -3V (a0 { ae2t32 2,202 @l (20 _ .2
S SEG'Jét ae""a"+ 2a“@ "¢a + 34c (e 1) (2.4)

where V 1s the spatial volume, that we will assume ..to. be a

finite constant The conjugate momenta are
7 = - 2ke®? (ad + a%$) (2.5a)
n, = - 2ke®a?i (2.5b)

where k = 3V/81G. The classical constraint which comes from the

time reparametrization invariance of the theory is

-2¢ . =-2¢ 3 2
=S non, o+ & g2 oy KA Ea*2¢ -1] =0 (2.6)
Ja?k * ¢  ga’k ®  hae

In terms of R and H = a/a Eq. (2.6) reads as follows
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R = so— = — - RH (2.7)

It is worth noting that this constraint and the Euler Lagrange
equationg derived from the action Eq. (2.4) consildering a(t)

and ¢{t) as independent wvariables

F+E3e 1@ 4224 4242 = gk W -1y (2.8a)
.. - 2¢
a a2z _ (e""~1)

are equivalent to the definition of R (Eg.(2.3)) and to

- _ 1 (1) —
.Rw 2ng+s H‘_m 0 (2.9)

where the tensor (I)Huv is defined through

(1) _ 1 & J 244
H = - Y=g R2d%x
W /Tg st S

In the quantum version the classical constraint given above

becomes the Wheeler-DeWitt equation

2 2 2_6_6¢ _ 2
(- 2~ + 2a 323¢ + k gee‘ [e 29 -l} v{a,$) =0

in the minisupersPace of the variables a and ¢. We have chosen
a factor ordering such that the differential operator in Eq.

(2.10) is the D'alambertian operator in our minisuperspace.
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. III THE SOLUTION

In order to study the stability of Minkowski spacetime we
must analize the evelution of a wave packet centered on the
classical solution, that is, ¢ = 0,which means zero curvature.
We will then look for a solution of the Wheeler-DeWitt .equa-
tion. As a matter of fact, it will be sufficient to restrict
our analisis to the case where the wave function depends much
more strongly on the scale factor than on the curvature, that

is

3 5 '
51} << a g‘g (3.1)

and the Eg. (2.10) reduces to

32 . k*a%e®® I -2¢ .72 _
T209 + =3¢ e -1 y(@a,d) =0 {(3.2)
This equation can be solved by separation of variables and

admits a general solution of the form

i[%%i*géil]

¥(a,¢) = Jaxame (3.3)

where X ig the separation constant and

2 4
M(0) = 3 E°-2¢ ~e? 5 o ‘%] (3.4)

P
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(see figure 1). From Eq. (3.3) it can be immediately seen
that the validity of approximation (3.1) depends on the range
of values of A, Therefore we choose the arbitrary function

A(X) such that it has a peak in A = Ao with lo large enough.

2.4;»{15)
K

g Y | B

Figure 1 — A graph of the function M(¢) defined by relation (3.4).

The maximum of the wave function (3.3) ran be obtained

using the stationary phase approximation. 1If we write
A(A) = |a(x) |e2BM)

then the maximum of y(a,¢)} is on the curve ¢{a) defined by

= ds a’
@) =22l ay + & (3.5)

Now we can choose the phase B(A) in such a way that ¢ =0 is

a solution of Eq. (3.5) for a given value of a =a,, that is
M($) = 2 (a® - a?) (3.69

The wave packet (3.3) is now peaked around ¢ = 0 for a=a_.
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In addition, for X, large enough, m, ~ 0(A;!) is small. This

means that the Hubble constant, as can be seen from Eq. (2.5b),
is also small, From these results we can show the instabiiity
of Minkowski spacetime. Indeed., for a = a, + & where § is in-

finitesimal, the maximum of the wave packet will be shifted to

M, ) = Glga; (3.7}

In gspite of the fact that § is small, it is obvious that the

arbitrariness of %b allow. us to have ¢Max as different from

$ = 0 as wished. This explicitly demonstrates . the unstable
character of Minkowski spacetime in quantum gravity.

It is worth noting that an inspection of figure 1 shows that

Eq. (3.7) has a solution only for

28€ 532 g5 > - L
ki (o} g = 3

otherwise the wave packet is smeared out.

IV FINAL REMARKS

In order to have a better understanding of the meaning of
the parameter lo' it is useful to approximate the derivatives
of the wave function (3.3) with the classical expressions for

the momenta. We have that

-1 %% = v To) y: (4.1a)
"0
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—8-
- i al = = 5 | - y
i ﬂaw loaoW {4.1b)
a=ao
2
where V(¢) = -I];—Eesz (ez‘t-l) ? and we used the fact that A(A) is

sharply peaked at A = A . From Egs. (2.5) and remembering

that ko is very large we find

2
H=--E—R-E;- (4.2a)
SAan
. koa;
R = - Sk (4.2b)

where ¢ is written in terms of the scalar curvature. In con-
sequence, we see that the relevant parameter in our model is
A = Aoag/ek, which is proportional to the ratio R2/H. Besides,

if we couple Egs. (4.2) we obtain

R N T35 (4.3)

which is the classical Hamiltonian constraint where the first
term is dominant when A is large. A simple inspection of Egs.
(4.2) shows that indeed high values of A mean both . small  H
and large R.

Finally, we would like to point out that it should be pos
sible to derive the R + e€R? model considered in this paper
beginning with the Einstein Hilbert gravitational action plus a non
homogeneous matter field. The Wheeler-DeWitt equation will
contain in this case the energy density associated to the

matter field, which turns out to be infinite. A covariant re
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normalization of this divergence should give rise .to. terms

quadratic in the curvature tensor, as is well known in the

framework. of Quantum Field Theory in Curved Spacetime. As we

' 'showed here, these termé will produce the instability of

Minkowski spacetime. We will address the issue of renormali-

zation in the Wheeler-DeWitt equation elsewhere.
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