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Abstract

Within the generalized equilibrium statistics recently introduced by Tsallis
(ps x [1—B(g—1)€,13/1~1)), we calculate the thermal dependence of the specific
heat corresponding to a harmonic-oscillator-like spectrum, namely, e, = w(n—a),
(Vw > 0, n = 0,1,2,...). The influences of ¢ and a are exhibited. Physically
inaccessible and/or thermally frozen gaps are obtained in the low temperature
region, and, for ¢ > 1, oacillations are observed in the high temperature region.
The specific heat of the two-level system is also shown.

Key-words

generalized equilibrium statistics, harmonic oscillator, multifractals,
two-level system



CBPF-NF-008/89

Recently a generalization of Boltzmann-Gibbs (BG) equilibrium statistics has
been proposed by Tsallis[1]. This distribution is based on a generalized definition
of entropy as follows[1]:

1-— g

s, :...T);_P (1)

where p,, ¢ and k denote the emergence probability of state n, a real number which

characterizes the statistics and a universal constant, respectively, The ¢ — 1 limit
corresponds to the standard entropy, namely,

S=—k) pulogps. (2)

The canonical distribution is derived by extremizing entropy (1) ( or, equiva-
lently, by extremizing the Renyi entropy{1,2] ) under the condition that the average
“energy "is constant. The cmergence probability p, of state n with “energy”e,, is
proportional to

{1 - g - Ve, )T (3)
Therefore . :
Pu = ‘2“'{1—/3(?— I)Era}"—-r, (4)
4
where .
Zy= Y (1 —Plg—1)ea) 7T (5)

B is a Lagrange parametcr which is interpreted as an inverse “temperature”, that
is, B = 1/kT. If the condition

does not hold, for some stute, its associated probability is defined to be zero and
consequently the summation in ¢q.(3) runs only over the states which satisfy the
condition {G). If no state satisfies this condition, we call such paramecter region
unphysical or physically snaccesstble. If only one state satisfies the condition (6),
we call such region thermally frozen. In the ¢ — 1 limit, expression (3) reproduces
the BG result, nanely, p,, o exp(—/fe,).

Under this distribution, we will consider the thermodynamic quantities of some
systems. The “internal energy”U is in general given by

U=< ey >= ) puen, 7

where < - -+ > denotes the average nnder the distribution (4). Hence the “specific
heat”C is given by

U . U
C = _u.....kﬁ,w
9 € €n
= L3 -U >} 8
ﬂ{<1"‘ﬂ(‘?_1)5n> } (&)

< 1‘““.3(‘1"' 1)e,
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The simplest system, namely a non-degenerate two-level one (€n = w(n—a),n =
0,1 and Vw > 0), has been discussed in Ref.[1], where its internal energy U (T")
was explicitly obtained. For future comparison, let us just calculate here, and
present in Fig.1, the corresponding specific heat C.

Let us then calculate the specific heat C associated with another very elemen-
tary system, namely a harmonic-oaci!lator-like one, characterized by the spectrum

ta mwin—a) (9)

withw>0,a€ Randn=90,1,2,....
The behavior of distribution p, for large value of n and ¢ < 1 is given by

Pn ~ m_lT (n - 00). (10)

Hence some momenta of this distribution are divergent. The partition function
diverges for 1/(g — 1) > —1, that is, ¢ < 0. The internal energy diverges for
1/(g—1)+1 > —1, that is, ¢ < 1/2. The specific heat diverges for 1/(g—1)+2 >
—1, that is, ¢ < 2/3. These divergences are of the otder of {(s) with s = 1+ 0,
where ((s) is the Riemann’s zeta function:

(=Y & (1)
© k=1

and s = m+1/(g—1) where m is an integer which is characteristic of the quantity
we are considering. We have performed computer calculations of the specific heat.
The results are presented in Fig.2. We remark that:

(i) In the kT/w — oo limit, C/k attains an a-independent value which equals 1
for ¢ = 1, and monotonously decreases from infinity to zero when ¢ increases from
2/3 to infinity.

(i) For g > 1 ( and only then ), C presents, in the high temperature region,
oscillations whose thermal period is kAT /w = ¢ — 1, the minima ( maxima ) of the
. oscillations are cusp- like ( rounded ).

(iii) For 2/3 < ¢ € 1 and all values of «, C vanishes with vanishing temperature.
(iv) The frozen and inaccessible regions are summarized in what follows:

For a > 1, there i8 neither frozen nor inaccessible regions.

For 1 > o > 0, there is no inaccessible region and the frozen region is given by

k
0< UT-S(i-—a)(q-l) ifg>1,

and by

0>%2(1-—a)(q-1) ifg< 1.

Fora<0:ifg>1,

0< k—T < —a(q — 1) corresponds to an inaccessible region
w
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and
kT
—alg—1) < - <€ (1 ~a)(g—1) corresponds to a frozen one;
ifg<i,
T "
0> e 2 —a{g — 1) corresponds to an inaccessible region

and

—alg-1) > kFT 2 (1 ~a)(q~—1) corresponds to a frozen one.

(v) For ¢ = 2 (¢ > 2) and all values of a, C discontinuously jumps from zero to a
finite ( or infinite ) value in the low temperature region, similarly to what occurs
in the two-level system.

As a final remark let us recall[1] that for the present generalized statistics phys-
ical applications are still to be identified. One can speculate on some candidates for
applications, for example, multifractals, nonergodic systema where non-euclidean
occupation of the phase space might occur, quantum gravity or similar situations
with fluctuating metrics. The specific heat remarkable properties herein exhibited
( mainly the oscillations and the existence of forbidden and frozen gaps ) might
be very helpful for identifying such applications.

One of the present authors ( C.T. ) acknowledges stimulating related discus-
sions with R. Livi as well as JSPS ( Japan }/CNPq ( Brazil ) support.
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Figure Captions
Figure 1 Therma! dependence of the specific heat of the two-level system:
(a) @ = —1/2 ( the curves are invariant under ¢ — 1 ~ 1 — q);
(b) ¢ = 2 ( the curves are invariant under [kT/w,(1/2 — a)] &
[-kT/w,—(1/2 - a)] ).
Figure 2 Thermal dependence of the specific heat of the harmonic oscillator:
(a) a=0;
(b) typical values of ¢ and «.
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