CBPF-NF-007/91

MAGNETOHYDRODYNAMIC COSMOLOGIES

by

R. PORTUGAL and I. Damidoc SOARES

Centro Brasileiro de Pesquisas Fisicas - CBPF/CNPqg
Rua Dr. Xavier Sigaud, 150
22290 - Rio de Janeiro, RJ - Brasil

ISSN 0029-3865



CBPF-NF-007/91

ABSTRACT

We analyse a class of cosmological models in
magnetohydrodynamic regime extending and completing the results of
a previous paper. The material content of the models is a perfect
fluid plus electromagnetic fields. The fluid is neutral in average
but admits an electrical current which satisfies Ohm’s law. All
models fulfil +the physical requirements of near equilibriunm
thermodynamics and can be favourably used as a more realistic
description of the interior of a collapsing star in a

magnetohydrodynamic regime with or without a magnetic field.
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1 INTRODUCTION

The importance of the study of magnetohydrodynamics“'

cosmologies lies in the possible presence of a primordial
intergalactic magnetic field®. The presence of such field in
the era prior to recombination (when the Universe temperature was
between 10°K and 103K) would induce a cosmological electric
current, since the material content in this era was ionized
hydrogen and radiation'. Analogous reasoning can be applied to
the collapse of a self-gravitating bounded fluid with a magnetic
field, which - for temperatures above 10°K - would enter a regime
of magnetohydrodynamics. The study of such large-scale electric
current has not been undertaken yet. A first step toward this

direction is the study of magnetohydrodynamics cosmological models

which is the aim of this paper.

In a previous paper“] we have analysed a class of

Kantowski-Sachs models in magnetohydrodynamic regime having a
Bertotti-Robinson-like solution as limiting configuration. Here
we extend our analysis to include also Bianchi type I and III
models. The material content is, as before, a perfect fluid plus
electromagnetic fields. The fluid is electrically neutral in
average but admits a spacelike electrical current which satisfies
Ohm’s law. Under some restrictions on the metrical coefficients
the problem of solving Einstein-Maxwell equations is reduced then

to the analysis of an equivalent one-dimensional Hamiltonian
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system, and all physically admissible solutions are obtained. The
thermodynamics of the models is also examined, due to dissipative
effects arising from the presence of a large-scale electric field

satisfying Ohm’s law.

In the paper we basically state results. The enormous
algebraic manipulations are straightforward and were purposely
omitted. our calculations were checked with the algebraic
computer system Reduce 3.3. In section II we treat the dynamics of
the models and we present the equations necessary to analyse them.
We discuss also the thermodynamics of the models and show that the
increase of entropy is guaranteed by the positivity of the
electrical conductivity. This exam was undertaken for
configurations near the thermodynamic equilibrium and a relation
among the sign of electric conductivity, the increase of the
entropy and the expansion parameter of the models is established.
In section III, we list all physical solutions of Einstein-Maxwell
equations. They are described by two parameters and the complete
characterization of the physical domain of the parameters
(including previous results in the literature) is given. We
conclude by discussing the possible applications of these models
to describe internal configurations of self gravitating collapsing

bodies in a magnetohydrodynamic regime.
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2 THE DYNAMICS OF THE MODELS

The geometry of the models is described by the line element

as? = at? - A%(t)dy? - B?(t)k? (@) (a8’+sin’ed¢?) (2.1)

where the function k(@) obeys the differential equation

According to the sign of £ we have spatially homogeneous models of
Bianchi type I (=0, k=1/sing), Bianchi type III (e=1,

k=1/cos8)and Kantowski-Sachs (e=-1, k=1).

As in our previous paper“], the matter content of the models

is a perfect fluid plus electromagnetic fields. We assume that
observers comoving with the fluid have four-velocity u = 8/6t, and
we denote by p and p the matter-energy density and pressure,
respectively, as measured locally by the comoving observers. The

equation of state for the fluid is assumed' to be:

1
P = AP, -5sasl . (2.2)
1
Although the standard physical range of A is 0% A 51, the
axtension to negative values is consldered here for completeness,
since some authors have digcussed extreme matter configurations

in which a net negative scalar pressure appears
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Electromagnetic fields satisfy Maxwell’s equations with source.

From spatial homogeneity and the existence of a preferred spatial

direction determined by the Killing field d8/8x, we restrict

the electromagnetic tensor to

Fbl = AE(t) ,

F,, = B? sin(@8)H(t) ; (2.3)

all other components zero. This is actually the |unique
possibility, as can be shown from purely algebraic considerations

in Einstein-Maxwell equations for the geometry (2.1).

The electric four-currrent is parallel to the electric field,
as follows from Maxwell equations for (2.1) and (2.3), and it can

therefore be given in the covariant form of Ohm’s law (Bekenstein

and Oron 1978):

3% = ¢E® = oF**u, . (2.4)

The spacelike character of the four-current (2.4) implies
that the density of electric charge of the fluid must be zero. 1In

other words, the fluid is said to be electrically neutral on the
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average and said to be in a magnetohydrodynamic regime with a
conductivity current. Since the four-current is parallel to the
electric field, the scalar o is identified as the electric
conductivity of the fluid. As we have mentioned earlier, ¢
depends on the cosmological time, and this dependence must be
prescribed by Maxwell equations. To specify the dynamics
completely we assume here a relation between A and B and restrict

ourselves to a class of models such that

A=B (2.5)
with r a real parameter.
Einstein-Maxwell equations2 for (2.1)-(2.5) yield then
d 2
o‘=-a¥!n(EB) (2.6)
H = H_/B? (2.7)
o -

.s . H2

2 _ - B - B ¢ _E _ o
E" = (1-1r) B + (1-xr") [E] E ;‘- (2.8)

We use units such that M G=c=1.
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r-1 ﬁ rg+4r+1 ﬁ 2 €
- () B2

== 5 - — - A (2.9)

i z -
(14A)r+3-2 B | (I+A)r” +H4Ar+i+d (BY _ €(A1+A) _ p943) = 0 (2.10)
5 B 2 B 282

where H is a constant and A is the cosmological constant.
Equations (2.6)-(2.8) are considered as defining the electric
conductivity o, the matter-energy density p and the square of the
electric field (in a local Lorentz frame) E-. In the domain of
solutions of equation (2.10), we must then guarantee the

positiveness of o, p, and E> in order to have physically

admissible solutions.

Introducing a new time variable 7 defined by dn=B %dt,
where’

_ (142)r® +4ar+14a

o (1) (£ ) (2.12)

and r = (A=3)/{(A+1), equation (2.10) can be reexpressed as

3
The case r=rn can be integrated without change of  varlable, but

it glves no physical solutions,
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r=r
]

2
B" - ["—*—"-’in— B! = o (2.12)

Here a prime denotes derivative with respect to 7.

For the Kantowski-Sachs case (e=-1), the point

B = vV—s B'= 0 (2.13)

o 2A

is a solution of (2.6)-(2.10) with p=0, o=0 and
E 4+ H = 2A

This is a limiting case of the solutions found by Bertotti'®'and

Robinson'®! (see also ref. (7]). In general, a first integral of

(2.12) is given by
(B)* + v(B) = C (2.14)

where C is an integration constant, and

20
(2.15)

_ e , 2AB° B
V(B} = -[ « (a+1)] (x-r )y

In the general case equation (2.14-15) is much complicated to be
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integrated. However we can interpret this equation as the
conserved Hamiltonian of a one-dimensional system with the
effective potential given by (2.15). This procedure allows us to
analyse gqualitatively the dynamics of the models once the value of

the "energy" C is given.

Physically acceptable solutions must be restricted to have
the energy density p and E positive during the time evolution of
the models. We shall also impose the positivity of the electric
conductivity o, this condition being justified by the
thermodynamical theory of fluids nean equilibrium. In the case of
perfect fluids plus electromagnetic fields with electrical

isl

current the theory gives the following equation for the flux

vector of entropy density S“, for our models,

s . = ¢E (2.16)

Therefore in order to satisfy the second law of thermodynamics
(S“;a z 0) we must impose the positivity of o. We correct here an
assertion made in the conclusion of our previous paper“! The
total entropy of all models considered there increases due to the
presence of a positive electric conductivity, namely the

conductivity is positive or negative if and only if the entropy

increases or decreases, respectively.



CBPF-NF-007/91

- -
To analyse the positiveness of p, E° and o along the
evolution we need to express these variables as functions of B

only. Using equations (2.11), (2.12), (2.14) and (2.15) we have:

_ 2A 2(1-r) ex C(r+l) (2r+1)
p = (1+1)(r-r°) [ o+l + o AB> M AB29*2 (2.17)
g2 . _2h ((r=1)(r+2) _ STOCN) e(ors1) (1-r) (1-3)) _ Ez
1:'-r° o+l dABa (1+A)AB2°“3 B"
(2.18)
. - 24 2(1-r) (r+2), ST(F°Ty) c(a-1) (2r+1) (1-r) (1-2)) @B
E°B**! (r-r ){ atl «AB? (1+2) AB?%**2 dn

(2.19)

The physical domain of B is bounded by the following curves

c(B) for which p, E’ and o are null, namely

_ -er 2(r-1)AB® 2a
Comp(B) = [a(2r+1)(r+1) + (a+1)(§r+1)(r+1)] ®

(2.20)
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142 (r-ro)HozB'z er (r-r,) . (r+2)AB2 -
isx Zao ey T e (ar ) T (e (2xF ) B
(2.21)
¢ (B) = 1A effr-ri) . 2(r+2)AB* 52
0=0 1-a |a(1l-a) (2r+l) (1-r) (1-a?) (2r+1)
(2.22)
= =2A/(A+1).

By plotting the various types of curves (2.15), (2.20-22)

which depend on the parameters r, A, €, H and A, the sign of p,

E° and ¢ can be analised.

tel

We list now the physical solutions :

i) Bianchi I

For

the Bianchi I case, we must impose that A=H =0 and €>0.

The physical quantities are given as function of time as

1
1
1+
B = [VE (1+a)] EY (2.23)
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2(r+1) (2r+1) 2 (2.24)
(142) (z-r ) (1+a)?

2 _ 2(2r+1) (1-r) (1~-a) £2

E : (2.25)
(1+2) (r-r ) (1+a)
a-1 -1
o= [m] t (2.26)

The parameter r must be restricted to the interval (-1/2,1) in
order to guarantee the positivity of p and E°. Using eq. (2.11)

we can show that O<a<2 if -1/35 A<l and -1/2<r<l (see F_ig. 1).

o=l

w0

o= 06

SN -

8.32 - \

aeo! \
i ————

2.20
“- '-‘
0.33 ] e
T e.50 .00 0.5 r 1.0
Fig. 1 Curves O{=constant. The curve o=1/2 is a divide batween

the cCurves that CTous the line A=1 and thoge that Cross the

line A=-1/3.
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concerning the sign of o, two kinds of solutions can be

considered: The expanding ones where t is in the interval (0,«)

and the contracting ones where t is in the interval (-»,0}. 1In

the first case we must have 1<a<2. These solutions were derived

[101

by Dunn and Tupper . The parameters a and b used by the authors

are related to ours through the eguations:

The region of solutions is described by the dotted triangle in the

plane (axb) of figure 2.

Fig.

2

b
1.00

0.67 \\\\Y

@.33

Q.20
-8.33 ©.00 .33 0.67 1.00 o

Reglon of solutions of Bianchi I models. The dotted region
10

represents the expand ing physical awlut:lomiK ) a nd the

hatched region represents new contracting

physical solutions. The daghed lines are excluded. The

line b=1/2 corresponds to solutions where o = 0. The point

F ix a EKasner wmolution.
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In our parametrization, the dotted region corresponds exactly to
the specification a>l, r<1 and a<l. To see this, note from

(2.23) and (2.5) that

1
b THa (2.27)
and
a = br . {(2.28)

For 1<o<2 we have from (2.28) that 1/3<b<1/2. Now let us analyse
the domain of a. By fig. 1 we see that the values of r varies
from 1 until the intersection value of the curve a=constant with
the line A=l (r=a-1). Hence for a given value of b we have

b(a-1)<a<b, and using (2.27) we obtain

1-2b<a<b

The lower value of a is bounded by the line b=(1-a)/2 (line PL of
fig. 2) and its upper value is bounded by the line b=a (line LR of
fig. 2). This reproduces the region described by Dunn &
Tupper“OI.

To include the second case, we must have 0<w<2. It is easy to
see that the triangle PLQ of fig. 2 corresponds to the interval

1/2<a<2. When a<l/2 the curves oa=constant cross the line a=-1/3,
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then the lower value of a changes and are given by the curve PR

whose equation is

—
b = 215 V&i;34a 23a (2.29)

The hatched region of fig. 2, including the curve PR without the
end points, represents therefore new contracting physical

solutions of Bianchi type I with non-null electrical conductivity.

ii) Bianchi III

For Bianchi III we must impose that A=H;=0 and C=z0. The
parameters A and r must be in the following intervals: -1/3=as0
and Osrsr in order to have p>0, o¢>0 and E>0, For C=0 the

physical quantities are given by:

t

B=- —— (2.30)
Va(r—r;) '
£ = (1+:Tt? (230

E=~- — (2.32)
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where te(~w,0).
implies that a=0.

presssure.

Note from (2.30) that r cannot be null
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(2.33)

and this

All solutions with C=0 have then negative

For C>0 the unique solution with non-negative pressure is

r=a=0 and oa=1/3.

by

B=vVt:-2v ¢t

2C
p = Ez E
3(t*-2vc )
g=2_YC-t

3t -2t

where te(-w,0).

iii) Kantowski-Sachs

For Kantowski-Sachs, the positivity of

In this case the physical quantities are given

(2.34)

(2.35)

(2.36)

P, E° and o implies
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that all solutions must have the Bertotti-Robinson-like models as

a limiting configuration. 1In this case, the constant C must have

the value V&Bo) and r must be in the interval -1/2srsl. These

solutions were discussed in details in ref. [4].

We remark that the above models (1)-(iii) are not symmetric
with respect to t» -t because this transformation changes the sign
of ¢. For the cases (ii)-(iii) this is a direct consequence of
eq. (2.19) for the physical solutions, which implies that the sign
of ¢ is opposite to the sign of the expansion & of the model. We
note that the expansion parameter is given by & = (2+r)/Ba”dB/dn,
for the models considered here. The physical region of time for
these models is (-w,0) where ¢>0. For the case (i) , the relation
between the sign of ¢ and 8 depends on the parameter a. If a.is
in the interval 1<a<2 (bunn & Tupper solutions) the expansion has
the same sign of the conductivity o; for O<a<l, the expansion and

the conductivity have opposite sign.

FINAL CONCLUSIONS

We have made an exhaustive study of the dynamics of a class
of cosmological models in magnetohydrodynamic regime. We found
new exact solutions of Einstein-Maxwell equations in the case of a

perfect fluid plus electromagnetic fields, extending and
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completing previous results in the literature. The fluid admits

the presence of electric charges but is neutral in average. We

imposed the equation of state p=ap, -1/3=As1, and also the
validity of Ohm’s law j“=aEa relating the electrical current and
the electrical field. The conductivity o is in our case a
decreasing (increasing) function of time, what is physically
expected since the expansion (or contraction) of the models
increases (decreases) the mean free path of the electric charges
through the fluid, decreasing (increasing) the conductivity. As
also expected they are not symmetric with respect to t « -t
because this transformation changes the sign of ¢, which is
opposite to the sign of the expansion parameter 6 of the models.
The positivy of o is a strong restriction on the set of physically
admissible solutions. This set could be enlarged (to include also
expanding configurations) if matter and electromagnetic fields
distributions with o0<0 are also allowed. However we know that
matter configurations with o<0 are far from thermodynamical

equilibriumuz]

and highly unstable, and such configurations are
only preserved during a phase of adiabatic evolution of the model

(6«|o| in suitable units).

The models fulfil the physical requirements of near
equilibrium thermodynamics, and they can be used as a more

accurate description of a collapsing distribution of matter for

0.

temperatures above 10° °K. In fact during collapse as the
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temperature raises above 10° °K-matter would enter a regime of

magnetohydrodynamics with or without magnetic field. We recall

that only class (iii) admits a non-zero magnetic field. The
matter distribution inside any finite proper radius contracts
toward the singularity where all physical guantities go to
infinity. The singularity is point-like if the parameter r>0 or
cigar-like 1if r=0. The electric conductivity is positive

warranting the validity of the second law of thermodynanmics.
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